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;5 > The relativistic generalizations of both molecular orbital and spin-valence (the Kappa
olm valence method) theories are used to investigate the covalent bonds that can be
e g formed by the ground relativistic configuration of a heavy element containing a
54 non-closed subshell of p or p valence electrons.

T O Both theories predict that p—H and p—H bonds are not greatly weakened compared
= with normal covalent o bonds and that covalent compounds based on the p? relativis-

tic configuration will be bent with an equilibrium interbond angle of 90°. Both
p—-H and p-H bonds are predicted by the Kappa valence method to be a mixture
of a normal covalent ¢ bond and the triplet bond formed by the interaction of two
electrons occupying orthogonal orbitals. This method predicts that the bond formed
between a heavy element and a group of rather different electronegativity may be
weakened by relativity more than a p—H or p—H bond because only the non-orthogonal
Heitler-London singlet portion of such a bond can be stabilized by ionic-covalent
resonance.
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RELATIVISTIC THEORY OF CHEMICAL BONDING 569

The Kappa valence method is used to show that a closed p2 subshell cannot form
a stable covalent bond.

Both Kappa valence and relativistic molecular orbital methods are used to investi-
gate the bonding between an element having a single p or p valence electron and a
group containing both a closed shell of n electrons and a single electron in the o
orbital. It is shown by the Kappa valence method that the presence of the n electrons
introduces destabilizing anti-bonding terms unless the n-o excitation energy is small
as for a halogen. The destabilizing term is predicted to inhibit the formation of a
normal covalent bond between a p orbital and such a group while in the p case the
bond is merely predicted to be greatly weakened. In the case for which the n-o
excitation energy is small both Kappa valence and relativistic molecular orbital theo-
ries predict that the bond is not weakened because the group adopts a valence state
that eliminates the anti-bonding terms to yield a bond of unit order containing both
o and = character. It is shown by the Kappa valence method that the ionic-covalent
resonance stabilizations of p—Halogen and p-Halogen bonds are not qualitatively
dissimilar to that of the corresponding non-relativistic bond. Relativistic molecular
orbital theory is used to show that the ground manifold of an element having two
valence electrons occupying Dirac-Fock p orbitals can covalently bind two halogens
and that the potential energy curve for inter-bond angle bending is shallow.

The bonding between the j—j coupled ground states of two heavy elements each
containing a single valence electron occupying a p or a p Dirac-Fock atomic orbital
is investigated by both the Kappa valence and relativistic molecular orbital methods.
It is shown that p—p but not p—p bonds are greatly weakened by relativity and that
p—p bonds are entirely m in character. These results are used to comment on the
cohesive energies of elemental E113 and E115.

1. INTRODUCTION

The overall objective of the series of three papers (Pyper & Grant (1981a), paper I, the present
work and Pyper (1982), paper III), of which this paper constitutes the second member, is to
predict the theoretical chemistry of the 7p series of superheavy elements. The purpose of this
second paper is to investigate the nature of the covalent bonds that can be formed by the ground
state of a superheavy element whose most loosely bound electrons occupy p or p Dirac~Fock
atomic orbitals.

The occupation of p or p orbitals introduces new factors into the chemistry of such elements
because the directional properties of the large components of relativistic Dirac-Fock atomic
orbitals, excepting those of s symmetry and those whose m; quantum numbers (Grant 1970)
equal *j, are quite different from those of the non-relativistic atomic orbitals conventionally
used to describe chemical bonding (Pitzer 1975). Only a linear combination of the two such
Dirac-Fock orbitals that have the same principal quantum number and orbital angular
momentum (/) associated with the large components but different total angular momenta
J (= 1£3) produces an orbital whose large components have the same directional and spin
properties as a non-relativistic spatial orbital occupied by an electron having a definite z-spin
component. For light elements, the energy needed to promote the j—j coupled ground state of
an atom containing a single electron in a p or a p Dirac-Fock atomic orbital to a valence state
capable of forming a normal covalent singlet bond is small compared with chemical binding
energies. Hence taking z to be the internuclear axis, the bond between a light element and a
group containing a single unpaired electron in a o orbital will be well described by the rela-
tivistic valence bond wavefunction. This is the direct relativistic analogue, built from four-


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

570 | N. C. PYPER

component orbitals whose large components correspond to the spin-orbitals p,a and p,B, of
the Heitler-London wavefunction (Pyper 1980a4).

The valence state excitation energies for the 7p series of superheavy elements are, however,
so large that they are predicted (Pitzer 1975, Grant & Pyper 1977, see also paper III) to
inhibit greatly the formation of chemical bonds of the conventional relativistic valence bond
type. This paper answers the question which therefore naturally arises as to whether the
ground state of such a heavy element can form a covalent bond without invoking a valence
state in which electrons are partially promoted from p into p orbitals. This is achieved by first
examining the nature of the bonds that can be formed between the ground relativistic con-
figuration of a superheavy element and an atom or group containing one unpaired electron
occupying a o orbital but no valence = electrons. Second the study is extended to examine how
the conclusions are modified by the presence of valence n electrons on the bonded group.

The study reported in §3 examining the bonding between a heavy element and a group
containing no valence n electrons not only fills in the details of the preliminary accounts
(Pyper 19804, b), which used the Kappa valence method, of the bonding to a hydrogen atom
but also shows that the relativistic version of molecular orbital theory makes very similar
predictions. This study is then extended, by using both the Kappa valence and relativistic
molecular orbital approaches, to investigate the covalent bonding between two hydrogen atoms
and a heavy element having two valence electrons occupying p Dirac-Fock atomic orbitals.
The Kappa valence wavefunction for such a system is taken to be that function yielding the
strongest bond subject to the proviso that p electrons are not promoted into p orbitals. The
excitation energy between the p} and pj, where the subscript denotes the total angular momen-
tum J (Grant 1970), levels of the relativistic p? configuration is assumed in this approach to be
negligible compared with chemical binding energies. Thus the method, which can be called
the J-valence method, in which the wavefunction is constructed by vector coupling two rela-
tivistic hydrogen-1s orbitals to the ground p} level of the heavy element is not considered.
Finally the Kappa valence method is used to show that a closed p? subshell cannot form co-
valent bonds. ‘

The last three sections of this paper examine how the conclusions of §§3, 4 and 5 are modified
by the presence of n electrons in the valence shell of the atom or group to which the heavy
element is bonded. This is achieved by first investigating, by both the Kappa valence and
relativistic molecular orbital methods, the purely covalent bonding between a halogen and the
j—7 coupled ground state of a heavy element containing a single electron in a Dirac-Fock p
or p orbital. The relativistic molecular orbital method is then used to show that a heavy ele-
ment containing two valence electrons occupying a Dirac-Fock p orbital can covalent bind two
halogens in a manner exactly analogous to the binding of a single halogen to an element
containing a single p or p valence electron. The investigation is completed by investigating the
covalent bonding between the j—j coupled ground states of a pair of heavy elements each having
a single p or p valence electron. The conclusions of some of this research have been published
recently (Pyper 19805).
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RELATIVISTIC THEORY OF CHEMICAL BONDING 571

2. THE SYMMETRY PROPERTIES OF MULTI-ELECTRON
RELATIVISTIC WAVEFUNCTIONS

(a) The hamiltonian

The group theoretical properties of the relativistic analogue of the multi-electron Schrodinger
equation will be derived because approximate wavefunctions having the correct symmetry
are usually more trustworthy than non-symmetry-adapted approximations. This discussion
differs from that of Oreg & Malli (1974) not only in that the full Brown hamiltonian including
projection operators is examined but also in that it is perhaps more straightforward because it
proceeds by directly seeking operators that commute with the Brown hamiltonian.

The closest relativistic analogue of the non-relativistic Schrédinger equation for an N-
electron system is the equation determining the eigenkets (|, (ry, 75, ..., ry))) and energies
(E,) of the Brown hamiltonian (#g,) (Brown & Ravenhall 1951, Mittleman 1972)

Bpe Vo (Tay ey T3)) = PORL PO (11, ..y 13)) = E | Uo(Te, ooy T3)) (2.1)

. N-1 N
with #y = 2 Aoi)+ X X i (2.2)
Hp(i) = cali) D) +e[B(i) = 1] + Vool r:) (2.3)

= Pre i) +Voue(12),s (2.4)

IR L ICRNEMPRC SICRN T (2.5)

The operator (2.2), which is expressed in atomic units, is the most obvious generalization of
the non-relativistic hamiltonian in which the Schrédinger kinetic energy operator for the ith
electron is replaced by the Dirac one #, (:). In the operator #p,(i) which acts solely on the
coordinates of electron ¢, the zero of energy is defined to correspond to that of a stationary free
electron, p(i) and f};mc(ri) are operators for momentum, and the potential energy of interaction
with nuclei, which are regarded as stationary spherically symmetric distributions of positive
charge possessing no magnetic moments, and ¢ is the velocity of light. The quantities « and g

0 of I o .

*= LP 0]’ A= [0 —I] (2.6)
where 6% are the 2 x 2 Pauli matrices and 7 is a 2 x 2 identity matrix (Dirac 1958). The opera-
tors #4 are projection operators onto the subspace spanned by the infinite number of anti-

are 4 x 4 Dirac matrices

symmetrized N-electron Hartree products
AN
(0613 ey 1)) = 7 TT () (27)
that can be constructed from the solutions |$,(r)) of the Dirac-Fock equation

Fl0a(r)) = (Pre+ VanetFer) [9a(1)) = €4|04(r) (2.8)

which have energies €, > —2¢? and therefore describe electrons. The operator Py, is not
unique because the orbitals |¢,) used to construct the # are defined by (2.8) which contains
the potential I‘}Ll which can be chosen in a variety of ways. However a full quantum electro-
dynamic calculation in which both the electron-like and positron-like solutions of (2.8) were
considered would yield the same result no matter how Vel was chosen.
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572 N. C. PYPER

The Brown hamiltonian is only an approximation to the complete description provided by
quantum electrodynamics not only because it neglects effects of the solutions of (2.8) having
€, < —2¢%, which describe positrons, but also because the r;;* terms in (2.2) are not Lorentz
covariant. However, the results of relativistic atomic calculations (Desiderio & Johnson 1971)
have shown that even the leading corrections arising from the positron-like solutions of (2.8),
namely the vacuum polarization and self-energy terms (of order 1/¢3, compared with 1/¢? for
relativistic effects), are only a small fraction of ¢, if Vet is chosen to be the Dirac-Fock potential
generated by the occupied atomic orbitals. Hence the corrections to (2.1) arising from electron—
positron pair creation are negligible far valence electrons provided Ver is chosen in a physically
sensible way. For valence electrons, the errors caused by the non-covariance of the rj;! terms
are negligible compared with chemical bond energies because addition of the Breit hamiltonian
to (2.2), which rectifies this to lowest order in 1/¢2, only changes valence electron energies by
a few hundred cm~! in heavy atoms (Mann & Johnson 1971).

(8) Linear triatomic molecules
(1) Symmetry properties of the Fock hamiltonian
The symmetry properties of wavefunctions for linear triatomic molecules of the type AB,
will first be derived because they are closely related to those of the other systems studied,

namely linear diatomic and bent AB, molecules. The coordinate system used, which is a right-
handed one centred on atom A with z taken along the internuclear axis, is shown in figure 1.

A

2

Bz zBz Bl zB|

Xg, X,

Ficure 1. The coordinate system. A, B, and B, label the nuclei A, B, and B; respectively. All three y-axes,
¥, ¥s, and yp_are oriented perpendicular and into the plane of the paper.

The symmetry properties of the Fock hamiltonian (2.8) are first investigated since those of
the Brown hamiltonian (2.1) are closely related not only because they both contain the Dirac
kinetic energy operator but also because the eigenfunctions |¢,(r)) of F are used to construct
#g,. The one-electron operator 1,(i) corresponding to the z-component of the orbital angular
momentum, that, I,(i), corresponding to spatial inversion and those, ﬁz,s(i )s ITI,,,s(i )and I:I“(i )s
corresponding to spatial reflexions in the yz-, xz- and xy-planes, obey

0y Gane+Pe)] = Lo Crue+P)] = [Hpes Pone+¥)] =0, ¢ =2x9,2,  (2.9)

provided the electronic potential Ps1 is chosen to have the full symmetry of the nuclear frame-
work. It would introduce unnecessary complications not to chose Pe1 such that the relations
(2.9) are satisfied even though this choice implies that the orbitals used to construct one com-
ponent of any electronically degenerate state cannot be eigenfunctions of a fully self-consistent
Dirac-Fock potential but only of an operator constructed from the average of all the degenerate
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RELATIVISTIC THEORY OF CHEMICAL BONDING 573

components. Such an average Fock operator is the relativistic analogue of that used to define
the orbitals in the non-relativistic restricted Hartree-Fock description of an open-shell atom
(Roothaan 1960). It is well known that the ca-P-term in the Dirac kinetic energy operator
prevents F from commuting with any of the operatorsi i, Hx o Hy s Or Hz s which corre-
spond to the elements of the spatial symmetry group of the molecule, because for example
ca-P is changed to ¢(—a,p,+a,p,+a,p,) and —ca- p respectively under the action of ﬁx,s
and I which change %, y, z to —x, y, zand —x, —y, — z respectively. Thus using the passive
mode in which symmetry operations are represented by transformations of the coordinate
frame (Brink & Satchler 1962), one has

i;]f‘is =“€¢'f)+c2(ﬁ—1)+f};luc+vela -
} (2.10)

H;I.,ISFHq,s = 6‘(——06(1}3,14- ,§ aq’qu’) +02(ﬂ'—1) +Vnuc+V;l~
@ #Fp
However, by introducing appropriate 4 x 4 matrices, it is possible to construct transformations

derived from the spatial symmetry operations that both commute with F and reflect faithfully
the group multiplication table. Introducing the 4 x 4 matrices

z, = [“g 3}1,] (2.11)

whose squares are unity, defining
bo=L+3z, L=Li, B, =0,.H,, ¢=x1,z (2.12)
where I,=4, H,,=1i2,8, ¢ =x1y,z, (2.13)
obeying LY=p4 H\=-iZ,p, ¢==xy,z (2.14)
and noting that X; = —ie; ;o with €, the antisymmetric three-index symbol (Margenau &

Murphy 1964), one can readily show using the anticommutation relations satisfied by the
matrices &, «,, &, and £ that R A n
I;7'FI, = HAFH, , = F. (2.15)
The commutator of ¥ with j, is standard while those with I, and ﬁq’t follow immediately from
(2.15), so that . A

(.50 = (R, 1] = (R H, 0 =0, g=x42 (2.16)
The choice made for the phases of the operators (2.13), which are determined by demanding
that the operators satisfy the group multiplication table, is justified in Appendix 1.

The eigenvalues, denoted i, of the operator I, are + 1 and those, denoted h,, of ﬁ pare +1i
because 1} = 1 and ﬁqt = —1. The eigenfunctions |¢,( r)) of (equatlon (2. 8)) can be
chosen to be simultaneous eigenfunctions of j,, I; and H ¢ also and therefore written as
|¢omiph,y, where m is the j-eigenvalue, because these three operators not only commute with
F but also with each other. Thus

jz|¢amiphz> = ml¢amiphz>9 (2.17(1)
I/:Iz,tld)amipkz) = hz‘d)amiphz); (2.175)
it'd’amipk ) = ipld)amipk > (2.170)

However, the | ¢, mzph ) are not eigenkets of Hgc s or Hy ¢ because nelther of these two operators
commutes with j J. or Hz ¢ Itis shown in Appendix 2 that both the kets (H, ;| b, miph,), ¢ = %, y)
are eigenkets of F degenerate with |¢,miyk,) having respective elgenvalues of the operators
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Iz I/:Iz,t and I, of —m, —#, and i,. This shows that the kets (ﬁq,t |, miph,)) can differ fror
|6, —mi, —h,) by at most a phase factor e so that
ﬁq,tld)amiphZ) = e%|o,—mi k), q = x1. (2.1¢

The case where m = 0 does not require consideration because the allowed values of m ar
odd half-integral as is well known.

(1) Symmetry properties of the Brown hamiltonian

The symmetry properties of the Brown hamiltonian are investigated by introducing th
multi-electron analogues of the operators j,, I, and H, ;

~ N . N . A N A X
Jz,T = i§1j2(l)’ ir1‘ = ‘_1;11 It(z), Hq,T = iI=]l Hq,t(l)’ qg=%Y, 2 (2'19
These operators obey
[jz,Ta g%(Jr)] = [iTa @H—)] = [ﬁq,T’ ﬁ(-’-)] = 05 qg=%Y, 2 (2'2(

The commutators of #& with jz m Iy and I:\IZ,T vanish because the kets (2.7) are eigenke:
of these three operators since they are built from the orbitals |¢amiph >. The commutators «
FH with Hq + (¢ = x,y) vanish by virtue of the relation H ! @(HH = ﬁ . which holc
because (TN |damiph,)) ((dymiph,| T and (o H{V 1|¢a—mzp—h 3) ({bg —mip—h
I1Y_,.2/) both occur in 2 since the commutatlon relations (2.16) ensure that if |, miy k) is a
electron-like solution of (2.8) (i.e. having ¢, > —2¢2) then PAIM| $,miyh,) also has this propert
Arguments identical to those used to establish (2.16) taken in conjunction with (2.20) show th:

[jz,T: f}?Br] = [iTa ‘;?Br] = [ﬁq,'r; J?Br] =0, ¢=x,9,2 (2.2

and hence that the eigenkets |\r,) of #p, can be taken to be simultaneously eigenkets of jz
i; and ﬁz,T and therefore written |y, M1, H_ ).
Arguments identical to those used in Appendix 2 to derive (A 2.2) show that

HE}PJZ,TH(]T = Jz,'l‘; .
I\_l A A~ NA q = x, y, (2.2‘
HlI.THz,THq,T =(—1) Hz,T’
and hence that
I:Iq,Tl‘l’aMIsz> = eian’a_MIp((“l)NI{z)); (2.2

where |V, — MIL,((—1)¥H,)) is an eigenket of Ay, degenerate with |V, MI,H,). The ca:
M = 0, which can only occur for N even, needs to be considered separately because in th
instance the |, ) can be chosen to be simultaneously elgenkets of all the five operators jz
I; and ﬁq 1> § = %, Y, z. Since it is readily established that Hq ¢ = 1 for even N, it follov
that the eigenvalues are +1 and hence that the eigenkets |\, 0l H,) must either rema:
unchanged or change sign under the action of I:Ix,T and I:Iy’T.

(¢) Diatomic and nonlinear ABy molecules

The entire theory of the last section applies unchanged to homonuclear diatomic molecul
if the origin of the coordinate system used is placed midway between the two nuclei, with
taken along the internuclear axis. The symmetry properties of heteronuclear diatomic molecul
differ from those of homonuclear ones only in that I, and H s no longer commute with V
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RELATIVISTIC THEORY OF CHEMICAL BONDING 575

or TZ,I so that I, and ﬁz,t no longer commute with F. This shows that the theory presented in
§2(b) applies to heteronuclear diatomic molecules provided the labels iy, #,, [, and H, are
removed from |$,miyk,) and |y, ML H,), and all references to the operators i, 1, 1., I:Iz’s,
ﬁz, w ﬁz,t and I:Iz,T are deleted.

For bent AB, molecules, only ﬁz’s and ﬁy, s of the five symmetry operators appearing in (2.9)
still commute with Vnuc and 1791 if the coordinate system depicted in figure 1 is used, the nuclei
being taken to lie in the xz-plane. Hence the theory of §2(4) applies to bent AB, molecules
only after the labels m, 7,, I, and M are removed from the kets |$,miph,) and |\, ML, H,),
and all references to operators constructed from Tz, i, 1, ﬁx,s and ﬁx,u are deleted. Thus
the eigenkets of F and 425, are chosen to be eigenkets of ﬁz,t and ﬁz,T and carry the respec-
tive labels 4, and H,.

(d) The transformation properties of Dirac—Fock atomic orbitals

The action of the operators ﬁq,t (¢ = x,y, z) on Dirac-Fock atomic orbitals centred on the
nuclei must be known before such orbitals can be used to construct approximations having

the correct symmetry to the relativistic wavefunctions |y, (7y, 75, ..., 7y)). The Dirac-Fock
atomic orbitals centred on the nuclei (denoted p) will be written in the standard form (Grant
o7 R0 el 60
. yn Xi,m Vs Pu ]
u,my = —|. s 2.24
in) = 2l e 224

and are therefore eigenfunctions of eigenvalues j(j+ 1) and m respectively of the angular
momentum operators ji and j, , (§u=1,+3%) defined relative to nucleus p as origin. The axes
%y Yy and z, of the coordinate frames centred on the different nuclei (n) are chosen to be
parallel (figure 1). In (2.24), P(r,) and Q (r,) are purely radial functions defined relative to
nucleus p as origin, and ¥, ,,(0y, ¢,) is a vector coupled space-spin function

Yoesm (O Bu) = =, Ly (m—mg) mg | jmy Y, o (Our Pu) [3ms) (2.25)

My

where Y, (0., ¢,) is a spherical harmonic having the same origin as P(r,), and |im,) is a
two-component spin function

B =g =1 B-n =[] =1p (2.26)

The total angular momentum j and orbital angular momentum / associated with the large
components are uniquely defined by the quantum number « defined as

k=—=(+3)a; a=1 for j=I+} a=-1 for j=1[-% (2.27)

The spatial symmetry operations ﬁx s and I:Iy, s transform ¢, to m,— ¢, and — @, respectively.
The operation ﬁz,s leaves ¢, unchanged but converts 8, to n,— 6, if p is the central atom in an
AB, molecule, and to ng, — 0y, if p is the first B nucleus (B,). These transformations taken in
conjunction with the results (Brink & Satchler 1962)

Vim0 ) = (21) 72 @, (6,) €,
O, n(0) = (=1)" 0, _,(0y),
O m(mu=0) = (=1)""" 0, (6,)
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show that
A, Vim0 ) = Yo_n(6y 60),
A, Y, (0 6) = (—1)™Y, (64, $4)s (2.28)

ﬁz,sYl,m(ous ¢u) = (—l)l‘-mYl,m(eu’: ¢u’)’ H' =K Hp= A’ ”" = Bl: H= B2'

It is readily established, by substituting (2.25) into (2.24) and invoking the definitions (2.12)
and (2.27) and the symmetry properties of the vector coupling coefficients, that

ﬁz.tl“u"”‘) = i(— 1)¥-2|u,k —m), (2.29)
A, Juukm) = (= 1)m+ (= 1)10-0 |y, —m), ' (2.30)
ﬁz,t‘“u’“") = i(_l)i_m+}(1—a)|uu"cm>a ”' =mp= A; H' = Bl, p= B2° (2'31)

3. BONDING IN MONOHYDRIDES
(a) The Kappa valence description of monohydrides

In this and the next section the bonding between a hydrogen atom and a heavy element
described in Dirac-Fock theory as consisting of closed subshells (Grant et al. 1976) plus a
single valence electron occupying a p or p orbital is investigated by using the Kappa valence
method. These sections have two main objectives, firstly to extend the previous study of bonding
in hydrides and secondly to summarize the methods used throughout this paper to investigate
bonding in the Kappa valence approach.

The results (2.29)-(2.31) show that the wavefunction

W) = S[|cored s ([vad[s — 3> £9lv —3)[sD)], n = %1, (3.1)

is an eigenfunction of j,,T of zero eigenvalue and of H, ; and ﬁy,'p with eigenvalue 7, and
hence that it is an acceptable approximation to |{,(ry, ry, ..., ry)). Here |core) is the Hartree
product

N-2
|core) = i1=-Il |ei(r:)> (3.2)

constructed from the Dirac-Fock core orbitals of the isolated heavy element, |vm) and |sm)
are the heavy element valence orbitals and hydrogen [s) orbitals respectlvely with m denoting
the m; quantum number, § is the normalization 1ntegral iy |Wav)™ -t and & is the antisym-
metrizer (N1)-4Zp(—1)%P. The positive sign is taken in (3.1) when |v) is a p orbital, and
the negative sign when |v) is a p orbital. This wavefunction is the Kappa valence wavefunction
(Pyper 19804) which, by analogy with the singlet and triplet Heitler-London wavefunctions
for the hydrogen molecule, describes the formation of a bond between the hydrogen atom and
the heavy element in its j—j coupled ground state for 4 = 1 and describes repulsion for y = — 1.
The calculation used to deduce the bonding properties of a Kappa valence wavefunction
consists of four distinct stages which are:

(1) Derive an expression for the total energy (E,y) of the wavefunction as (Yv|#g:| Vv,
using the orthogonality of all the orbitals on any one atom and neglecting both the differential
overlap of any core orbital with any orbital belonging to a different atom and differential
overlaps of core orbitals on different atoms.
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(2) Extract the small (ca. 0.2 a.u.) energy of interaction (Fj,,) of the atoms from the large
(ca. 20000 a.u. for a superheavy element) total energy including internuclear repulsion (Ery,.)
by using the atomic Dirac-Fock equations satisfied by the valence orbitals, dropping terms
containing the overlaps and differential overlaps neglected in (1). In this approximation the
terms €. {sm|c), arising from the off-diagonal Lagrange multipliers present in the atomic
Dirac-Fock equations to maintain orbital orthogonality, vanish while the energy of interaction
of the nuclei plus the cores becomes (Zy — N¢g) (Zy — Nog) /R. Here Zy; and Zyy are the charges
of the nuclei of the heavy element and the hydrogen atom respectively, Nz and Ny are the
respective number of core electrons (for hydrogen Ny = 0) and R is the internuclear distance.

(3) Express Ej,, in terms of purely spatial one- and two-electron integrals, neglecting the
small components, which is permissible because E;,; has no terms linking the large and small
components since the Dirac kinetic energy operator (#.) has been eliminated in step (2).

(4) Compare the form of the expression derived in (3) with those derived from non-
relativistic wavefunctions whose bonding characteristics are known.

The general features of this procedure will be illustrated, and results needed throughout this
paper will be presented by applying it to the wavefunction (3.1). If the |, (r ) in (2.8) used
to construct the projection operators Z entering the Brown hamiltonian (Hy,, (2.1)) are
chosen to be Dirac-Fock atomic orbitals of either the isolated heavy element or of the molecule,
all the occupied Dirac-Fock atomic orbitals of the isolated atoms can to a good approximation
be written as linear combinations of electron-like (¢,) — 2¢2) solutions of (2.8). Hence one has

Eq = (el Purl¥r) = sl Pl W) (3.30)
= S2[<core|s(¢vE| (s — 3] £ <V = 3| s3] #n 3 (= )2 P[[core)
x<J(IVBls =1 £alv = DIsb)] (3.:30)

The energy E, required in step (1) is calculated from this equation by using the immediate
consequences of (2.29) that if O(1) and O(1, 2) are respectively one- and two-electron operators

~ EAMOWA, (1) = O, } -
120 FAR) 001, 2) A, ()L, (2) = O(1,2)
(-

then <AmA|OIBmB/ 1)%(aA_uB)<A m,&IOlB mB>,
(AmACmC|O|BmBDmD) (-1) “’A+“c-“B—“D)<A——mAC—mC]6|B—mBD-mD>,

with [Am,), |Bmg), |Gmc) and |Dmy,) Dirac-Fock atomic orbitals (2.24). The total energy
Ey,, is found, by explicitly considering each of the permutations in the sum over P in (3.3)

satisfying

} (3.5)

Il

and adding the internuclear repulsion, to be
Evey = $[Eent 3 CclVule) + vl o+ Pornlvi) + 53 b+ Poeslsh)

+29(s3 |V (v p + Poim[sh) +n (s vEY (Ecn +2 (clVle))

+(vis — 3t |vis — 5 £ 9<vEs — §rl v — Is3)
Fodvis — 3rptlstv — 1) — (vis — §|mpt|s — 3vE)] + Zi/R, (3.6a)
S = (1+9¢vi|sd)®) 4, (3.60)

where Egy; is the energy of the core of the heavy element, V is the potentlal due to the proton
and VDF,. is the Fock operator of the core (equal to Z j —R, with J. and K, relaiivistic
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coulomb and exchange operators built from orbital |c)). Although the approximations of
neglecting overlap between each core orbital and all the orbitals on different centres and
multicentre core—core differential overlap may not be quantitatively accurate, they suffice to
reveal the qualitative features of the bonding because this arises from the overlap of the valence
orbitals. The interaction energy is extracted from (3.6a) (step (2)) by substltutmg the Dirac-
Fock equations satisfied by the valence orbitals,

(P ro. +Vam + Vore) [vm) = e,|vm) + T €cylc), | (3.7a)
(e + V) |sm) = Eglsm), (3.75)

with Pyg the nuclear potential of the heavy element, into (3.6a) the terms €, {sm|c) being
neglected and Z.{c|Vy|c) being written as —(Zg—1)/R in accordance with the approach
outlined above. The result is

Erww = Ecg+ey+Eg+Ejy = Eyg+ Eygy,

Eyny = SvEPalvE) + <3Pk + Porulsh) + 1 (s3vEYVE Pam + Pors + P |s3)
+(vhs — dlrillvis — 1) £ 9¢vis — Hratlv — 3sb) |
Fo(vis — 3|rit|skv — 1) — (vis — lriatls — dvED] + R (3.8)

Since the expression (3.8) contains no operators linking the large and small components,
the simultaneous validity of two further results shows that Ej, can be approximated solely
by the terms containing only the large components (step (3)). Firstly, examination of Dirac-
Fock calculations for even superheavy elements shows that, for valence orbitals, the ratio
Q(r)/P(r) is of order 1/c in the outer spatial regions, making the dominant contributions to
integrals such as {s}|v}) and {s}v}|riz*|vis}) which are non-zero solely by virtue of the differen-
tial overlap of valence orbitals on different centres. Secondly, the results of the atomic Dirac-
Fock calculations reported in paper I show that the norms of the large components 1 + M,/2¢2
(My = —¢%(v|1—p|v)) deviate from unity by approximately 10~* and hence that the errors
introduced into direct integrals such as (vis — }|r!|vls — 1) from loss of normalization will
be of the order of 3 x 10-3 a.u. (x 7 cm!) for R ~ 3 a.u. which is expected to be typical for
a superheavy element (Fricke & Waber 1970). Use of (2.24) and (2.25) shows, the phase
conventions of Condon & Shortley (1935) being used, that the large components of Dirac-
Fock atomic orbitals, when expressed in terms of the spin functions |a) and |B) and spatial
orbltals that are eigenfunctions of 1,, are

[s3)y, = |so e, |B3)y, =,“T|Po°‘>+\/§lpl B, |P%>L = \/§Ipo°‘>+7L|PIB),
s =Pn =18 B |P-P1 = T|POB> VElpaa), |[p—%L = J%IPoB)"‘J’alp-la)a (3.9)
P = [P12)s |[P—%u = |p-1B),

where the numerical subscripts denote the 1, eigenvalues, and subscript L denotes the large
components. Substitution of these results in (3.8) converts this to

Eint = aS2[{polPaalpod + (solPilsed + 750l Po Pol ¥ + Varlsod
+ {PoSoli2!| PoSe) + 7 {PoSol 71250 Po) + (1 + 7 (s,|Po)%) R7Y]
+ (1—2) S (Py|Plpa) + (solPilse + <Pasolriz| P15
— {p1Solri*[soP1) + R71], (3.10q)
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S = (1+an{s|ped?)—?, (3.105)
Ve = Vaw+Poem, (3.10¢)

(d|Ppuled = (da|Fpnlday = (dBFps|dB)
= g <d(r1) fc+(r2) ristc(ry) dr, e(rl)>——<dozc1‘|rl‘21|c1‘eoc>. (3.10d)

Here P}y differs from VDFE solely by the omission of terms in the exchange operators con-

taining small components, (3.10d) defining its matrix elements between the spinless one-

component functions |d) and |e). The quantity @ in (3.104) is  when |vm) is a p orbital while
it is £ if |vm) is a p orbital.

The result (3.104) is interpreted (step (4)) by introducing the non-relativistic wavefunctions

43 = (14 RGNR|pNRY) 4 7| coreNRY | Py [N F5|ap—pNRBa)],  (3.11a)

SN JeaB + 7N Ba)], (3.110)

where yN® = 1 for the |'T) and |*II) functions but #™® = —1 for the |3Z) and |'II) ones.
The orbitals |phR) and |sY®) are spatial one-component non-relativistic Hartree-Fock atomic
orbitals satisfying the non-relativistic analogues of (3.7). Methods identical to those used to
derive (3.10), except that 'y, is replaced by the Schrédinger hamiltonian, show that

Ei("°E) = (147" P2 2 (A T pi ™) + V5T
+ 7RI I 4+ s + YTt )

+7<po SN [rigt [N P )) + R, (3.124)

101y = FfJcoreN™y[piT)

Eing(310) = <pYT|V| pY™Y + (¥R AR [sNRY 4 (pRRs R ! [pRTs T

— p(pFRSNR|pl[sNRPNRY 4 R-1, (3.120)

The function |'Z) with interaction energy Ein¢(*Z) is readily interpreted since it is a Heitler—
London non-orthogonal singlet wavefunction describing the formation of a normal covalent
bond. The interpretation of the function |3II), which describes the interaction of two atoms
each containing one valence electron whose spins are parallel and which occupy orthogonal
orbitals, is not standard because experimental examples of such systems seem to be rare. The
case of Si, (and O,) differs from that of the wavefunction (3.114) because the methods used
to derive (3.12) show that the interaction energy predicted by the valence bond wavefunction
A [|sigma) Fs(py A P-1.B8—P-1,aPr3) J5]aB— Bad] (|sigma) is the portion of wavefunction
built from o orbitals) for the 3%; ground state of Si, contains terms of the type {p; A|pi,»>
(pLB|I7A+I7,'3|p1, A (7, and Vs are the potentials entering the atomic Fock operators) which
characterize the non-orthogonal Heitler-London singlet interaction energy (3.12a). It has
been pointed out (Pyper 19804) that the lowest 3IT excited states of the group IIIB hydrides
do not provide experimental examples of orthogonal triplet bonds because for BH the minimum
in the potential energy curve for this state arises from an avoided curve crossing. It has been
subsequently pointed out (Pitzer & Christiansen 1981) that the minima in the potential energy
curves for the lowest 311 states of GaH and InH similarly arise from avoided crossings. Further-
more the model pseudopotential calculations on TIH (Pitzer & Christiansen 1981) confirmed
the fact already known and discussed for BH (Pyper 19804) that due to the overlap of the
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hydrogen Is orbital with the closed valence s? subshell the bonding between a hydrogen atom
and the s?p, configuration of a group IIIB element is small or even non-existent. In the
light of these data showing that the 3IT states of the known group IIIB hydrides cannot serve
as models of an orthogonal triplet bond, the calculations of TIH cannot be construed as
evidence that the present theory (Pyper 1980z and below), which assumes that the core
orbitals |c;), (3.2), play no role in the bonding, is incorrect. The outermost s orbital of the
known group IIIB elements is too expanded and loosely bound to be regarded as a core
orbital. Furthermore it should be pointed out that the high ionicity of TIH is yet a further
reason why calculations on this system do not test the description of purely covalent bonds
presented in this section because it is shown below (§3(4)) that bonds containing substantial
quantities of both covalent and ionic characters are affected by further factors.

On the basis of the experimental dissociation energies of the 3IT, excited states of CuH and
AgH, which do not seem to have the features rendering the group IIIB hydrides unsuitable
models, it was suggested (Pyper 198oa) that the order of an orthogonal triplet bond is }.
Furthermore the non-relativistic molecular orbital description of these states by the configu-
ration (n— 1) d¥!np}, where ¢ is the fully bonding orbital s(ns+ 1sg)/4/2 undoubtedly predicts
a bond order of } without any assumptions being made beyond those standard in molecular
orbital theory. This suggests, based on the evidence currently available, that the bond described
by the function [3IT) (3.114) should be taken to have an order of }.

Comparison of the expressions (3.12) for the interaction energies of the functions (3.11)
with the interaction energy (3.10) shows, with the order of the bond described by the function
|3TT) taken to be } as discussed above, that the orders of the purely covalent bonds described by
the totally symmetric wave functions (3.1) having n = 1 are S2[}(1+ a) +a{sy|po)?]. These
orders become £ and £ for p-H and p-H bonds respectively in the limit that a{sy|p,)? is small.
Comparison of (3.10a) for = —1 with Eint(Z) and Ejnt(®IT) shows that the non-totally-
symmetric wavefunctions (3.1) having 4 = —1 consist of a mixture of a strongly repulsive
Heitler-London non-orthogonal triplet wavefunction and a weakly bonding (bond order })
orthogonal triplet function ((3.115) with # % = 1),

(b) The role of ionic—covalent resonance

The results that the orders of p—~H and p-H bonds are % and § respectively in the small-
overlap limit suggest that, althoiigh the large p — p excitation energies in heavy elements
greatly inhibit bonding described by the relativistic valence bond method, the overall effect
of relativity is not to inhibit the formation of purely ¢ovalent bonds. However, it is well known
that a covalent bond between a pair of elements A and B of significantly different electro-
negativity has larger bond energy (D,g) than the average (3(Dy, + Dpp)) of the bond energies
of the A-A and B-B bonds if the A-B bond is formed from a hard Lewis acid, hard Lewis base
pair (Pearson 19684, ). The assumption made in the following treatment that the core of the
heavy element does not actively participate in the bonding implies that the ion E+ is a hard
Lewis acid (Pearson 19684, 6). Such an increased bond energy can be naturally explained by
non-relativistic valence bond theory as the energy lowering occurring when wavefunctions
describing the ionic systems A-B+ and A+B- are added to a covalent Heitler-London wave-
function of the type |'X) (Pauling 1932), which mechanism is known as ionic-covalent reso-
nance. The possibility and extent of resonance stabilization of Kappa valence wavefunctions
must be examined if the chemistry of heavy elements is to be fully understood.
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The heavy elements of groups IIIB and VB of the Periodic Table, which are those having a
single P or p electron outside closed subshells, are less electronegative than hydrogen. Hence
only resonance between the function (3.1) and the ionic structure (denoted |Yy,,)) E+H-
will be investigated in detail. Application of the four-step process described above requires
both that the ionic function be constructed from the orbitals satisfying (3.7) used in (3.1) and
that both relativistic and non-relativistic wavefunctions be considered. These wavefunctions are

[Vres) = cll\l’xv>+‘2|\l’ion>’ / (3.13)
and [UREY = ' FPE) + B YRR (3.14)
with <\|r'res|\|/res> = <‘|’§e§|‘l’g§> =1, : (3.15)

where the coefficients ¢; and ¢]'} are determined as usual by solving the secular equations
|H—EA| = 0, and the ionic wavefunctions are

[V1on) = o7[|core)|s})ls — 1], (3.16)
VIR = o/ [[coreNR)|sNRa)|sNR )], (3.17)
In (3.13) |VY,y) is the totally symmetric wavefunction (3.1) having % = 1 while the results
(2.29)-(2.31) show that the ionic function |{;,,) has the same symmetry as |{,), being an
eigenfunction of J, r, ﬁa:,'.l‘ and ﬁ,,.T with eigenvalues 0, 1 and 1 respectively. The elements
of hamiltonian and overlap matrices entering the secular equations determining the energy
and coefficients ¢, and ¢, are found, with overlap between the core orbitals |¢) and the hydrogen
orbitals being neglected, to be :
Hy, = (Wiou|Ppe+ Zu/R|Wion) = Ecu+2Em +2¢s}|Pan + Vorulst)
+(sds — d|rietsds — 1) — Csds — Hrmtls — dsh) + R
= By +Ey— ey +2(sHn + Porelsh) + (ks — drilsds — 1)
— (sts — H{rls — 51y + R |
= ats‘l‘Eint("r'ion)’ ) (3‘18)
Hy = <‘I’lon|‘9?3r+ Zi/RVw) = J2S8[CsEVE) (Ece+ R+ (S%l'%zk.e. +I7H +Px +I7DFE|S%>)
+ (HP e+ Vi + P+ ol V) + (shs — Hrigt[ves — 1) = Gsbs — 3riatls — #vd)]
= V2S¢sH|vED (Ecw + Eq +e,) + y2 S[<shIvE) (¢t + Porulst) + R
+ (53| PalvE) + (sbs — BlriatvEs — 3 — (sds — Hlratls — 3vi)]

= N/2 S<S%IV%>Eats+Eint(i_KV): (3'19)
4y = (W!onl‘"ion) =1, (3.20)
Ay = Vion|Vev) = 2 S<s{vE), _ (3.21)

where the equations (8.7) were used in the second step in (3.19). The element (\l/,cvl(.%zB,-i-
Zyg/R) |V,v) has already been calculated, (3.8), while 4,; = 1.

The change in the resonance stabilization energy on passing from the non-relativistic func-
tion (3.14) to the relativistic one (3.183) arises both from differences between the mixing coeffi-
cients ¢; and ¢;'F and from the difference between Eini(i — xv) and its non-relativistic analogue
ENR(i—1Z). However, the origin of the change in resonance energy is revealed by examining
Eint(i—xv) and ERF(1—1X) because the change in the coefficients is caused by that in the
T4t Vol. 304. A
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matrix elements. The relations (3.9) show that Eiq(i — kv) and E}F(i —1X), when approximated
solely by the large components, become

Emy(i—xv) = F (2a)} Hint/ (1 +a(so|po)?)3, - (3.22q)
Hing = {So|Po) (SOW +1/R|se) + (So|VH|Po> + (595|712 |So Pos (3.225)
EXR(I-1Z) = 2 HYR/(1+ (SNR|piRy9)d, (3.234)

NE = (SRIPEE) TR 4 /RIS + (R g [pR) + (Nl TR, - (3.2810)

where the negative sign is taken for the p case and the positive sign for the p one. Although
neither the two relativistic expressions (3.224, ) (both p and p valence orbitals must be
considered) nor the expression (3.23a) for ERF(i—1Z) have the same denominators, it is
readily seen that the differences between these three will be dominated by changes in the
coefficient a (for p, a = }; for p @ = %; while a = 1 for ENF(i—1Z)) even for values of the
overlap |{so|po)| as large as }. This shows that the resonance stabilization of covalent bonds
between a hydrogen atom and a heavy element in its j— coupled ground state is considerably
reduced compared with that possible in the relativistic valence bond method and that this
reduction is greater for p~H bonds than for p—H ones. These results are readily understood by
recognizing that the overall symmetry of the upper components of the multi-electron wave-
function |,0n) is !Z while the upper components of the functions (3.1) can be expressed as a
sum of two terms, one of ' symmetry and one of 3IT symmetry. The 3II symmetry term cannot
contribute to Ein(i—kv) because the matrix elements (3H|Kuc+ﬁlllz) vanish while the 1%
symmetry portion of the upper components is less in a p—H bond than in'a p-H one.

The magnitudes of the ionic—covalent resonance contributions to the binding energies
predicted by using the wavefunctions (3.13) and (3.14) are calculated by solving the secular
equations. This is most conveniently achieved by introducing the normalized function
(1= | Wion| Vv )12 (| Vion) = {Wev| Vion)| Wiv)) and its non-relativistic analogue, and then
diagonalizing the matrix arising from |,y ) and this function. This matrix when expressed in
terms of the elements of H given by (3.8), (3.18) and (3.19) becomes, ‘with the use of the
notation 4,, = 4, ,

[ Hy, (Hy—4H;,) (1- |A|2)-i ] (3.24)
(Hzl_A*Hu)(l-‘lAlz)-* H22+|A|2H11"AH12"A*H21) (1—]4]?)-? '
- Eint [Eint(i—xv)* — 4En] (1—|4|2)2
= faut [Eint i—xv) —A4*E] (1- |A| % [Eint(Yion) + |4 |2Emt —AEp(i—xv)
—A*Em(i—xv)] (1-14]%)"1
_ En Hfz“]
= ZLats + [ 2011' Hzozxz . | (3.25)

It is shown in Appendix 3 both by considering the simplest ionic model for bonding of super-
heavy elements and by examining intermediate results of valence bond calculations that there
is good evidence for believing that Hgf — Ejy, is greater than |Hff|. The qualitative features of
the bonding can be elucidated by expanding the energy Eres of |Y,es) Obtained as the lowest
root of (3.25) and retaining only the leading term

Eres = Lggst+ %(Eint +H, ) %( Eint) [1 + 4 2/( Elnt) 2]* (3°26a)
Eres & Eyo+ Ejpy— [Epne(i—xv) — AElnt] 2/[Eint(Vion) — Elnt —24(Ejpy(i — xv) —AE;y,)]. (3.265)
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Examination of the matrix (3.25) not only confirms that Ei,(i — «v) is primarily responsible
for the resonance stabilization, but also pinpoints the mechanism more precisely because the
additional term —AFEiy; in HY is the correction to the purely molecular part of the matrix
element (\l/ion|9fm+ Zy/R) | V) which arises solely because |{,) and |{;on) are not ortho-
gonal. The approximate form of E,, (3.265), showing that the entire resonance stabilization
is proportional to (H{)? underlines the significance of this term.

The explicit expressions for Hfy and its non-relativistic analogue are found from (3.22) and
(3.23), when expressed solely in terms of the large components, to be

HE = F y2a(Hini — 30| Po) Eint) / (1 + a5 po)D)?, (3.27a)
HEN® = J2[HNE — (NN Eind('E)]/(1+ (N [pfTH)L (3.278)

Since the term A(Eini(i—«v) —AEin;) in the denominator in (3.2654) will be much smaller
than |Ejy(Vion) — Eing|, and the latter quantity will not change significantly when the two
relativistic and the non-relativistic cases are compared, it follows that the differences in the
resonance contributions to the bonding for the three systems will be dominated by changes
in (3.27). Furthermore these changes will arise mainly from changes in the ya(1+a{so|p,)2)*-
factor not only because the purely covalent bond energies Eint will not differ greatly because
p-H, p—H and p¥®-H bonds have been shown to have orders of %, § and 1 respectively but
also because Eint is multiplied by the overlap (so|p,). This shows that the resonance stabilization
energies of p~H and p—H bonds are smaller by factors of $(1+ (so|po»2)/(1+ 4<{s0|poy?) and
Z(1+<5o|Po)?) /(1 + 2{so| po)?) respectively than that of a corresponding non-relativistic bond.
Each of these fractions is identical to the fraction of the Heitler-London non-relativistic energy,
entering the purely covalent bond energy FEins, (3.10a), arising from the Heitler-London
singlet portion of the upper components of |V, ). This result coupled with the previous obser-
vation that only this singlet portion contributes to the term Ejni(i— kv) primarily responsible
for the resonance stabilization shows that in the approximation (3.26) only the Heitler—
London singlet contribution to the bonding between a hydrogen atom and a heavy element
in its j—j coupled ground state can be stabilized by ionic—covalent resonance. These fractions
depend only weakly on the overlap {s,|p,), being for example 0.36 and 0.69 for $Solpoy = %
in p—~H and p-H bonds respectively compared with } and % in the zero-overlap limit.

Since p—H and p-H bonds as treated here can be expected to provide a good model for any
bond between such a heavy element and a group containing no n electrons and a single un-
paired electron in a o orbital, the bonding characteristics deduced above apply to all such
bonds between hard Lewis acid-hard Lewis base pairs. It has been shown that the bonds
p-g- and p-g, between a heavy element in its j—j coupled ground state and a group g, of
similar electronegativity will not be greatly weakened compared with their non-relativistic
analogues having respective orders of # and §. However, the bond between a heavy element
and a group of rather different electronegativity is predicted to be considerably weakened
compared with its non-relativistic analogue because only a fraction of the bond can be stabilized
by ionic-covalent resonance.
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(¢) The relativistic molecular orbital description

(i) Methodology

The purpose of this subsection is both to present the fundamentals of the relativistic molecular
orbital theory used throughout this paper and to explain and justify the methods used to
interpret the bonding described by relativistic molecular orbital wavefunctions.

The multi-electron relativistic molecular orbital wavefunction is built from one-electron
molecular orbitals |¢;m) which can be expanded in a complete set of Dirac-Fock atomic
orbitals, denoted for linear molecules as |y,m):

|§;m) = ;Qil%tm)- ' (3.28)

For nonlinear molecules the molecular orbitals |$;m) cease to carry the label m. The expansion
(3.28) is the direct relativistic analogue of the non-relativistic Roothaan scheme (Roothaan
1951) and thus differs from the approach of Kim (1967) in which the large and small compo-
nents are separately expanded in a basis. However, an expansion of the type (3.28) is equally
valid because all the Dirac-Fock atomic orbitals of any atom, both occupied and unoccupied,
including those of energy less than —2¢2 constitute a complete set. The coefficients ¢;; are
calculated by solving the matrix equation (Roothaan 1951)

F\C = SC& | (3.29)

where Fy is the molecular Fock operator having elements (xtIF M| %) and S is the overlap
matrix (S, = {%:|%)). The qualitative features of the bonding are revealed by assuming both
that the core orbitals of the individual atoms remain unchanged on formation of the molecule
and that the valence molecular orbitals can be expressed solely in terms of the valence orbitals
of the constituent atoms. The second assumption parallels that made in the first of the four
stages in the Kappa valence method in that overlaps between the core orbitals on one atom
with the valence orbitals on another are neglected. V

Two different arguments show that the qualitative predictions of chemical bonding made so
successfully by non-relativistic molecular orbital theory should not be regarded as based on
the simple criterion of the total energy of the N-electron wavefunction. Firstly it is well known
that molecular orbital theory cannot be used to construct an entire potential curve because,
except in special circumstances, the dissociation process is described incorrectly. Secondly it
can be questioned whether the binding energy can be calculated as the difference between the
total energy predicted by a molecular Hartree-Fock wavefunction and the sum of the Hartree-
Fock energies of the isolated atoms because it is not clear that the molecular energy and the
sum of the atomic energies are strictly comparable. Indeed evidence that they are not comparable
is provided by the very poor agreement with experiment often shown by dissociation energies
calculated by this method, the case of F, which is thus predicted to be unbound by 1.63 ¢V
(Wahl 1964) being the most dramatic example. However, it can be strongly argued that simple
molecular orbital theory has been so outstandingly successful in explaining chemical bonding
because, for small and intermediate internuclear distances, it can correctly predict the forces
on the nuclei which, by the Hellmann-Feynman theorem, can be expressed as a sum of orbital
contributions that can be simply understood. Approximations, constructed from a small basis
of atomic orbitals centred on the nuclei, to the exact Hartree-Fock wavefunction do not satisfy
the Hellman-Feynman theorem exactly although it is exactly satisfied by the true Hartree-
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Fock function. However, it has been shown by Hurley (19544, &, ¢) that the errors arising when
this theorem is applied to approximate molecular orbital wavefunctions do not obscure the
essential features of the bonding provided that the experimental dissociation products of the
multi-electron state under investigation are not ionic. Thus the bonding properties of a molecular
orbital depend solely upon the contribution that it makes to the forces on the nuclei. These
have been shown (Berlin 1951) to depend solely upon the region of space occupied by the
molecular orbital, one concentrating charge between the nuclei in a diatomic molecule being
bonding and one concentrating charge behind the nuclei being anti-bonding, thus explaining
the success of simple molecular orbital theory.

The discussion of the last paragraph shows that the bonding properties of a relativistic
molecular orbital wavefunction should be investigated by examining the charge distribution
and applying the ideas of Berlin (1951) and of Bader and coworkers (Bader et al. 19674, b;
Bader & Bardrauk 1968) rather than by attempting to calculate its energy. It must first be
shown that the description, provided by non-relativistic theory, of the forces acting upon the
nuclei still applies in the relativistic case. The relation (3.3a) with |{,,) replaced by the exact
N-electron Dirac—Fock wavefunction |y pp) is satisfied exactly for all nuclear configurations
provided the orbitals (2.8) used to construct 'y, are chosen to be the exact Dirac-Fock mole-
cular orbitals denoted |$p,mpr). Hence it follows that the proof (Stanton 1962) showing that the
exact non-relativistic Hartree-Fock wavefunction for a closed shell system satisfies the Hell-
mann-Feynman theorem is also valid for the molecular Dirac-Fock function. This result is a
straightforward consequence (Stanton 1962) of the relativistic analogue of Brillouin’s theorem

(W(a- )|z bypr) = 0, (3.30)

where |{(a — e) ) is the singly excited determinant constructed by replacing the orbital | ¢ ,ypr)
occupied in |yypr) by the unoccupied orbital |$peypr), Which is an immediate consequence
of (2.8). It should be noted that although the sum of Dirac spinors used to express the derivative
0|dampr)/0A, where A is a nuclear coordinate, will contain both electron- (¢ > —2¢%) and
position- (¢ < —2¢?) like solutions of (2.8), the relation (3.30) is satisfied by all |y(a — €))
regardless of the eigenvalue ¢,. Application of the Hellmann-Feynman theorem to a diatomic
molecule having nuclei p and p’ shows that the z-component of the force (F,,) acting on
nucleus p is given by

P z%wwmfwwmﬁ
A arz’ . o

4
~FZ,2//R~27, 3 ZI%WN%mAMM, (3.31)
aeYMDF ¢=1
where z,, and r,, are measured relative to nucleus p as origin. The positive sign is taken in
(3.31) if the z-coordinate of nucleus p’ is less than that of nucleus p, and the negative sign if
it is greater, the sum over a is over all the occupied Dirac-Fock molecular orbitals, and ¢ is

the spinor index so that the integration over r, is purely spatial.

The bonding properties of a relativistic molecular orbital wavefunction can be investigated
by replacing ¢,ypr in (3.31) by the approximate molecular orbitals calculated according to
the prescription presented at the end of the first paragraph of this section because the errors
arising from applying the Hellmann-Feynman theorem to an approximation to |Yppr) do
not obscure the qualitative features (Hurley 1954¢). In this approximation the core orbitals
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of atom p, which contain a total of N, , electrons, are assumed to be unchanged upon molecule
formation. In the calculation of the force F, , predicted in this approximation, the contributions
of the core orbitals (|c,)) of atom p vanish while the total contribution of all the core orbitals
(lcw)) of atom p’ is N, ,-/R? which merely cancels the repulsive force arising from N ,, units
of charge of the nucleus p'. These force contributions show (Bader et al. 19674) that the core
orbitals do not contribute to the bonding. It should be pointed out that, for the core orbitals,
the contributions of the small components, which are the terms in (3.31) having ¢ = 3 and
¢ = 4, cannot be neglected because a significant fraction of the electron density resides in the
small components. For the 1s orbital in E113, for example, the norm ( j: Q%s(r)dr) of the
small components is 0.21.

For the valence molecular orbitals, unlike the core orbitals, the contributions of the small
components to the forces (3.31) can be neglected because they are smaller by a factor of ¢2
than those made by the large components. This shows that the bonding properties of valence
relativistic molecular orbitals are determined by those of the large components. This conclusion
coupled with the observation that the core orbitals are strictly non-bonding establishes the key
result used throughout this paper that the bonding characteristics of relativistic molecular
orbital wavefunctions are determined by the bonding properties of the large components of
the valence molecular orbitals.

(ii) Bonding in hydrides

In this subsection the purely covalent bonding between a hydrogen atom and a heavy
element containing a single electron in a p or a p orbital outside closed subshells is investigated
by using the relativistic molecular orbital method. This problem is reconsidered even though it
was cleanly solved by using the Kappa valence method because both the molecular orbital and
Kappa valence approaches are approximations which, in the same way as do non-relativistic
molecular orbital and valence bond theories, represent two extreme viewpoints. Hence one
can have almost complete confidence if both the relativistic molecular orbital and Kappa
valence methods make the same prediction, while such confidence is hardly possible if only
one of the two approaches has been examined.

A purely covalent bond between a hydrogen atom and a heavy element having a large
energy separation between the valence p and p orbitals is described in relativistic molecular
orbital theory by the wavefunction

[¥ao) = [|core)|01)|¢ — 1)) (3.32)

Here |$%) is the bonding molecular orbital which is expressed as a linear combination of the
two atomic orbitals [v}) and |s}). The atomic Dirac-Fock equations (3.7) show that the two
diagonal elements (v}|Fy|vi) and (s}|Fy|s}) of the molecular Fock operator can be expressed
as

BV = oot VRV + P, ) (3:35
(sHFulsty = B+ <sHPn+Pors + Pontls) '
because Por = #re + VNE + VDFE + VH + Vval (3.34)

where ¥, is the sum of the coulomb and exchange potentials generated by the orbitals |$3)
and |¢ —4). There is a small ambiguity in defining purely covalent bonding because it can
be argued that this implies either that the energies of the isolated valence orbitals are equal
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(i.e. ¢, = Ey) or that the energies of the atomic orbitals in the molecular environment are
equal (i.e. (v}|Fylvi) = (s%]f‘ﬂs%}). However, this ambiguity is not important because the
difference between the molecular terms in the two matrix elements (3.33) will be small and
consequently one can take these two matrix elements to be equal without contradicting the
assumption that the bonding is purely covalent. With this assumption the bonding molecular
orbital |$3) becomes

[63) = J5 Smo( F |[vE) +[s3)), (3.35)
Syo = (LF (vEsi)), (3.36)

where the z-coordinate of the proton is greater than that of the nucleus of the heavy element,
and the negative sign is taken for a p orbital and the positive sign for a p one. The molecular
orbital |¢ —1) is degenerate with |$1) from which it can be generated by using (2.18).

The results of the last §3 (ci) show that the bonding properties of the wavefunction (3.32)
are determined by those of the large components |$3 ), of the valence molecular orbital |¢3).
The expressions (3.9) show that these large components are

|3 = SMO}/'I‘Z‘[I(«/“PO'I'SO) ay F (1 —a)‘}]pl B, (3.37a)
Syo = (1+ y/a<so|poy) 2. (3.370)

Substituting (3.374) into (3.31), and then noting that the core subshells are assumed to have
negligible densities at distances from the nucleus of the heavy element greater than R, show
that the forces F, i and F, i on the nucleus of the heavy element and the proton are given by

F,g=-R2-2(1+ Ja(so|p0>)‘1 (%(SOIZE/’%J |50> + Ja(so|zE/ri;|p0>), (3.384)
F, g =R?-2(1+ Valse|po)) 3 (1 —a) <P1|ZH/’%I|P1> + %a<Po|ZH/’io'i|Po> + Ja(sole/rf{|p0>].
(3.385)

Here zy, zg, rg and ry are defined as z; , and r, , in (3.31). The results (3.38) show that, for
internuclear distances R greater than the equilibrium internuclear separation but sufficiently
small that the atoms interact significantly, the contributions to the forces arising from the one-
centre densities merely balance the repulsive force (¥ 1/R?) between the proton and the
nucleus plus the core of the heavy element if the normalization factor Sy o does not deviate
significantly from unity. It is the terms in (3.384) and (3.38%) constructed from the overlap
charge density po(7)s,(r) that are responsible for the attractive force between the nuclei and
hence the binding. Although both the forces F, i and F, y must vanish at the equilibrium
internuclear distance, the binding can still be attributed to the overlap charge density (Bader
et al. 1967a) because the force contribution arising from this density exactly counterbalances
the repulsive force arising from the nuclei, core orbitals and one-centre density terms. The
one-centre density contributions to the forces in (3.38) only fail to counterbalance the repulsive
force (¥ 1/R2) between the proton and the nucleus plus the core of the heavy element because
the presence of the overlap charge density causes the normalization constant Syo to be less
than unity. These results show that there are no specifically anti-bonding effects and that the
bonding, which is purely covalent by virtue of the equality of the coefficients of |[v}) and [s})
in |¢1) can be attributed to the overlap density which occupies the binding spatial regions
(Berlin 1951). This suggests very strongly that covalent 5—H bonds are weaker than p~H ones
because the coefficients multiplying the similar overlap densities in (3.38) are 75(1 + 75 {s,| o))
and 24/3(1 + /§{so|pop) " respectively. Furthermore these bonds are predicted to be weaker
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than a normal covalent ¢ bond because in the p and p cases the respective fractions 5%, and
15310 of the density which arise from the = components of |v} )y, do not contribute to the bonding
whereas in a normal covalent bond the entire density is available to participate in the bonding.

It can be very seriously questioned whether the strengths of p—H, p-H and normal o covalent
bonds can be related more quantitatively by comparing the coefficients multiplying the overlap
densities. This approach would fail to disentangle the real bond order changes caused by the
differing fractions of the density possessing ¢ spatial symmetry from the very probably spurious
ones predicted solely because the ratio of the p, function and the hydrogen s orbital in (3.37)
changes. Thus the order of the normal ¢ bond formed by placing two electrons in the normalized
orbital ¢, p, + ¢,s would be predicted to depend on the coefficients ¢; and ¢, were it taken to be
2¢,¢,, a fully ionic bond being predicted to have zero order. This shows that the orders of p-H
and p-H bonds can only be reliably calculated by isolating the fraction of the density that can
be held responsible for the binding and confirming that this fraction can be regarded as fully
bonding with respect to those portions of the nuclear charges that can be regarded as bound
by it. Since firstly the bonding is purely covalent and secondly the fractions 3S%o and #S%o
of the density in the p and p cases respectively, which arise from the n components of |v + )y,
do not contribute to the overlap charge distribution, these fractions do not contribute to the
bonding. Hence the bonding arises from the remaining fractions (1 —4S%0 and 1—3S%, in
the p and p cases respectively) of the densities that have purely o symmetry. Thus molecular
orbital theory predicts the orders of p—-H and p-H bonds to be 1—3S8%0 (= (2+ /3<5¢|po))/
(3+4/3¢s0|Po))) and 1—{Sfto (= (5+24/6{s0|Po))/(6+24/6<s0|Py))) respectively which are
qualitatively similar to those of (24 4/8<so|Po)?)/ (3 + 4/3<so|Po)?) and (5+ 2,/6{s|po)?)/
(6 4 24/6(so|poy?) predicted by the Kappa valence method. Furthermore both relativistic
molecular orbital and Kappa valence theories agree in predicting the orders of p—H and p-H
bonds to be £ and § in the limit of small overlap {s¢|p,)-

It can only be concluded that this approach, in which just the = symmetry portion of |$3)y,
is regarded as not fully bonding, is not too simplistic if it can be shown that the entire ¢ sym-
metry portion of |$3)y, can after renormalization be regarded as fully bonding. The argument
is most simply presented by taking the normalization constant Syo to be unity. The bond
order is } for H where occupation of a fully bonding molecular orbital by one electron binds
two nuclei of unit charge. The bond order in the system having the same total nuclear charge
of two in which one electron binds a nucleus of charge z, to one of charge z, (= 2—z,) is
4z, z,. Consideration of the limit in which one of the nuclear charges is zero shows that the
bond order in this more general system of which Hy is a special case cannot be independent
of z, and does not therefore remain }. Occupation by one electron of the molecular orbital
(3.39¢), which is normalized even if overlap is not neglected, binds a nucleus of charge ¢ to
one of charge #, the order of the bond that has no ionic character being }(3%). Similarly a
bond of no net ionic character having an order of }(15?) is formed when occupation of the
molecular orbital (3.394) by one electron binds a nucleus of charge 1% to one of charge }{:

op = (1+%2(so|Ped) " 3(Po+ v/3s0), (3.394)
op = (1+ £/6s0|PoY)~t F5(x/2P0 + 4/350)- (3.390)

Simple electrostatic scaling arguments show that if the magnitudes of the éharges of both the
nuclei and the electron are reduced by a factor of x, then the bond energy and bond order are
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reduced by a factor of 2. This result taken in conjunction with the deduced orders of the one-
electron bonds of the above two systems shows that a bond of order } is formed when a proton
is bound to a nucleus of charge £ by occupation of the molecular orbital (3.394) by § of an
electron. Similarly, the binding of a proton to a nucleus of charge ¢ by occupation of the
molecular orbital (3.395) by 13 of an electron yields a bond of order {%. It has already been
shown that when the molecular orbital |¢p3) is occupied by one electron the m symmetry
portion of |¢p4)y, can in the p and p cases be regarded as counterbalancing the effects of 1
and § respectively of a unit of core charge. It then follows that the bonding characteristics of
the singly charged positive ion of electronic configuration |core)|$1) are similar to those of
the two systems in which nuclei of respective charges  and § are bound to a proton because
the ¢ symmetry portion of the density (¢2)7, (¢63) respon31ble for the bonding is identical to
that generated by the appropriate fractional occupation of the molecular orbitals (3.39).
Hence the bond order in the singly charged positive ions |core)|¢4) is 4 if |[vi) is a p orbital
while it is 1% if |[v1) is a p orbital. Consequently the orders of the p~H and p—-H bonds (3.32)
formed by the occupation of both the bonding molecular orbitals |$3) and |¢ — ) are § and
2 in the P and p cases respectively. This confirms that the orders of the bonds (3.32) can indeed
be calculated by simply isolating the fraction of the density that by virtue of its © symmetry
is non-bonding. If overlap is not neglected in (3.38) then the fractions 1530 and §S3o of the
density having n symmetry counterbalance the same number of units of charge on the proton
leaving occupation of the non-normalized molecular orbitals (1 —1S%6)? o, and (1 —$S%0)¢ o,
to bind the remaining charges. It follows from the arguments given before equation (3.39) that
the bond orders are (1—3S¥o) and (1—34S3o) thus justifying the methods used in the last
paragraph.

(iii) Relation to the Kappa valence method

The relation between the N-electron relativistic molecular orbital and Kappa valence
wavefunctions is revealed by expressing the large components of the valence part of (3.32) in
terms of corresponding non-relativistic configurations. With the introduction of the configura-
tions built from the orbitals (3.394) and (3.394) for the respective cases where |v)isa p ora

p orbital, |102> lj (66aB)),
|*(c I‘J (op_yaa)),
Is(cnl 1> = l&i (ops BB)D, (3.40)
[B(n_171)o) = |5(Po1P1—P1P-1)72(aB + Ba)),
I'n2) = |5(P-1P1+P1P-1)7z(aB — Ba)),

the large components of |0 ) for the p and p cases are

[Vpmodn = — (1—38%0) |16y + FaSmo (1 — 18%0) H[|B(on_y) ) — |3(omy) _1)]

+aveSirol[|*(m_ym)o) + ['n2)], (3.41a)
I\I’pMO>L = (1— %SMO) |1°2> +71'6_SMO(1 —%Sﬁ;o)% [|3(0'7t—1)1> - |3(°'7t1)—1>]
—syeSio[ [B(n_ymy)o) + |'n2)], (3.41b)

from which the zero overlap limits are obtained by setting Syo = 1. Since it has been shown
that the orbitals (3.39) should be regarded as fully bonding while the n orbitals are non-
bonding, the formal bond orders in the configurations 62, on and =% can be taken to be 1, }
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and zero respectively. The total orders of the bonds in (3.41) are predicted, by weighting the
bond orders contributed by each configuration (3.40) by the square of the coefficient, multiply-
ing it and forming the sum, to be 1 — 1S%0 and 1 — 8% in agreement with the previous results.

The mechanism of the bonding in the relativistic molecular orbital and Kappa valence
approaches appears to be rather different because the = symnietry portion of |v});, is non-
bonding in the former approach while it makes an important contribution to the bonding in
the latter. Nevertheless the difference is not as great as suggested by this observation because
the bonding described by the molecular orbital function is similar to that predicted by the
Kappa valence one in that both methods predict the bond to be composed of a mixture of a
normal singlet ¢ covalent contribution having a bond order of unity and a triplet contribution
arising from a wavefunction having II symmetry which has a bond order of }. However,
although both approaches predict identical total bond orders in the zero-overlap limit, the
individual 16 and 3IT contributions are not identical. Thus for p—H bonds the Kappa valence
method predicts the bonding to be }'c and $*II while the relativistic molecular orbital approach
predicts both these fractions to be § with the remaining § of the wavefunction being formally
non-bonding. In p-H bonds the Kappa valence approach predicts $'¢ and }*I1 bonding while
the relativistic molecular orbital method predicts these fractions to be 4§ and 1% respectively.

It should be pointed out that the ratios of 1:2 and 1:5 in the p and p cases respectively of
the contributions made to the bond order by the 3II and T functions is independent of the
order assigned to the bond formed by double occupation of the molecular orbitals (3.39). It
is shown in Appendix 4 that the predicted orders of the p~-H and p-H bonds are not greatly
changed if a different much weaker assumption is made about the order of such a bond. It
should also be pointed out that relativistic molecular orbital theory quite unambiguously
predicts that the portion of the large components of the wavefunction (3.32) that has 3I1
symmetry contributes to the bonding without any assumptions being made beyond those
standard in molecular orbital theory.

4. BoNDING IN DIHYDRIDES
(a) The Kappa valence description of p? dihydrides

The only heavy elements capable of forming more than one covalent bond without the need
to invoke a valence state in which p electrons are partially promoted into p orbitals are those
of group VIB whose electronic configurations in the limit of large p — p excitation energies
are p?p?. It is shown in the next section that the ground {2 closed-shell configurations of heavy
group-IVB elements cannot form covalent bonds while heavy group VIIB elements are
restricted to forming just a single covalent bond because their ground p*p® configurations
have only one electron less than the p?p* inert gas configuration. In this section the Kappa
valence method is used to investigate the covalent bonding in group VIB dihydrides. It will
be assumed both that the p electrons are so tightly bound that they can be regarded as belonging
to the core and that the energy separation between the two levels of the p? configuration having
total angular momenta (J) of 0 and 2 is negligible. The qualitative features of the results apply
to the bonding between a group VIB element in the p?p? configuration and any two ligands
each of which has no = electrons and a single unpaired electron occupying a ¢ orbital.

Although group theoretical arguments can neither reveal every detail of the bonding in
group VIB dihydrides nor predict the molecular geometry, they nevertheless determine several
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essential features of the Kappa valence wavefunction. Thus the bond between a hydrogen
atom and one hybrid denoted |t;) constructed from the four Dirac-Fock p orbitals of the
heavy element (E) cannot be described by the single product [t;) (c5]s; 3> +¢4|s; — 1)) because
this does not have the correct symmetry properties under the operation ﬁy_t (2.19) corre-
sponding to reflexion in the molecular (xz) plane. It is therefore necessary to introduce the three
further hybrids defined by R

|t2> = Hy,t|t1>a

lt3> = ';in,tlt1>’ (4'1)
. . lt4> = Hy,t|t3>
from which the relation A
—iH, [t} = —[ty) (4.2)

is established by expressing |t,) in terms of |t;) and invoking ﬁz,tf-\ly,t = ——PAIy’tPAIz’t. The
definitions (4.1) and relation (4.2), taken in conjunction with the results from (2.30) and (2.31),

Hyisudd = —[su =3, Hylsu—3) = [sud), n=1,2 (4.3)
Hz,tlsﬂ%> = ilSu/%—% Hz,t|su-%> = —ilSu»—%>, n=1 HI = 2, and p=2 ul =1, (4'4)

show that the wavefunction

[V = SZ{|coreddel |ty (calsi b +calsy — 1)) — [t (—cals 3> +6olsy — 1))]
X:/%Hts) (03152?}5>_54|32 ) |t4> (c4|82%>+c3|s2 -1 )]}> (4.5)

is totally symmefric under both I':Iy,T and I?IZ, ¢. Here § is a normalization constant which
becomes unity if all orbital overlaps vanish. The factor of —1i in the definition of |t;), (4.1),
has no fundamental significance being merely introduced so that the four coefficients of the
orbitals |pm) in |t;) are real if those, (4.6), in |t;) have this property. Comparison of (4.5)
with the wavefunction (3.1) shows that the first term in square brackets in (4.5) describes a
Kappa valence bond between the heavy element and the first hydrogen atom while the second
square-bracketed term describes a similar bond to the second hydrogen atom. These two bonds
are entirely equivalent being interconverted by the operator ﬁz,t corresponding to reflexion
in the xy-plane. For the general case in which the dihydride is nonlinear, the wavefunction
cannot be specified more precisely by purely group theoretical arguments, in contrast to the
" monohydrides discussed in §3 for which the homopolar Kappa valence wavefunction was
symmetry determined.

Further details of the bonding in dihydrides can only be deduced by determining the form
of the hybrids |t;) more explicitly. By expressing |t,) as

[t:) = di|p}) +d,|p3) +ds|p —3)+dip -3 (4.6a)
with 1+di+di+d: =1, (4.60)

where the coeflicients d; are to be determined, and then explicitly constructing |t,), |t,) and
[ty) from (4.64) by using (4.1) and the results (2.30) and (2.31) that

H,lp+3) =F|p7d), H,lp+d =+[p7d), } (4.7)
—iH,(p+3) =Flp+§), —iH, p+3) ==+|p £}, '
it follows that Gty = (t]ty) = 0, (4.8)
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for all values of ;. Hence further conditions are needed to fix the coefficients in (4.6). By direct
analogy with the hybrids used to describe bonding in non-relativistic theory, such as the well
known sp? tetrahedral ones, the four hybrids |t,) will be chosen to be orthogonal, thus ensuring
that the two Kappa valence bonds in (4.5) are essentially independent. Thus imposing the two

conditions : :
(it = t|ty) = 0 (4.9)

ensures that all four hybrids are orthogonal because it follows from these relations and (4.1),
by noting that H2 ; = —1, that
(tats) = (tofty) = 0. (4.10)

The first of the conditions (4.9), which becomes —d3+d%+d%—d} = 0 after substitution for
[t;) and |t3) by using (4.64), (4.1) and (4.7), shows when taken in conjunction with (4.65)
that d3+d3% = d3+d3 = }. This result taken in conjunction with the second condition (4.9),
which becomes d,d; +d,d, = 0 after substitution for |t;) and |t,), shows that d; = +d, and
dy = Td,. Although the hybrids have not been uniquely defined, it is clear that one chooses
, = —d, and hence d; = d, so that each hybrid points towards the hydrogen atom to which
it is bonded in the wavefunction (4.5) rather than away from it. Hence defining the hybrids

lxa> = 72 (Ipd)—|pd)),

lxe) = =7 (lp=H+p -,
lxs) = —72 (Ip3) +pd)),

lxe) = Z(lp=3—p-),

(4.11)

which obey relations exactly analogous to (4.1) and (4.2), any wavefunction (4.5) constructed
from hybrids (4.1) satisfying the orthogonality conditions (4.9) can be written

[Vev) = S&?{|corc)
x Fel(ca] A1) + ol x2)) (cals13) +ealsy —3D) — (—cal Xad + 1l %)) (—cals13) +eslsi — )

X ﬁ[(ﬁl%a) —a|%4)) (cafs2d) — ‘4|52 —k%» — (ea| s +01|X4>) (cqls2d) +03|32 -
(4.12)

with B4 =cd+ci=1. (4.13)

Both the coefficients ¢;—¢, appearing in the wavefunction (4.12) and the H,EH, bond angle
upon which they depend are determined by the condition that the total energy, composed of
the purely electronic energy (\IJKV|J?B,N;KV) plus the internuclear repulsion (Ey,.), be a mini-
mum. This condition is entirely equivalent to minimizing the interaction energy ((\IIKVP?B,[ Ve
+ Epye— Ex,— 2Ey), where Eg is the energy of the J = 2 ground level of the p? configuration
of the heavy element. When the interaction energy is calculated by using the methods of §3 (a),
it is found to contain the two terms

L = —{(ey 21+ C2%2) | (cas1 3+ 6481 3))
x {(c381 3 + 481 — ) |Vaw + Vepr + V3, 1| (6161 +02%2) s (4.14a)

I = ((‘1%1"‘%12)‘(—‘451%”"'351—%))‘
x (3513 +¢48 — ) Ve +Vopr + V1| ( — 2 X +61%2) )- (4.145)
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where ﬁCDF is the Dirac-Fock potential due to the core of the heavy element and I%’H is that
due to proton 1. The quantity ], is the exact analogue of the term in 7{(s¥%|p™*) in the inter-
action energy Eint(3X), (3.12a), responsible for the repulsion predicted by the non-orthogonal
Heitler-London triplet wavefunction |32}, (3.114). Both this term and /; are easily seen to be
positive. The quantity I, (4.14)), being analogous to the attractive overlap term responsible
for a large fraction of the bonding displayed in the Kappa-valence method by a p—H bond, is
likely to be an important contributer to the energy of the t;—H; bond. Since the repulsive
contribution /; vanishes if the overlap {t|(¢;s;%+¢,5,—3%)) is zero while the attractive term
I, is proportional to the overlap {t,|( —¢4s;3 +¢38; — %)), it follows that the interaction energy
predicted by (4.12) can be approximately minimized by demanding that

Ctl(ess1d+eas1—3)) = 0, (4.15)
while maximizing F = (| (—egs1 54638, —3)), (4.16)

subject to (4.13). This approach can be expected to predict the bond angle quite well because
the coulomb-type terms in the interaction energy will be relatively insensitive to this angle.
This method also neglects the energy needed to excite the J = 2 ground state of the heavy
element to the valence state, which is a mixture of the J = 0 and J = 2 levels of the ground
p? manifold, that can be extracted from (4.12). This quantity will be small for E116, however,
because even the p% - p3 excitation energy is predicted to be 10* cm~! (paper I). The neglect
of the inter-proton repulsion implicit in determining the wavefunction solely through the two
conditions (4.15) and (4.16) is likely to be a good approximation because it is known from
non-relativistic valence theory that molecular geometry is largely determined by electronic
factors. One good example of this is provided by the bond angles in H,S, H,Se and H,Te
whose electronic structures can be described as consisting of bonds to two pure p orbitals on
the central atom.

It is shown in appendix 5 that, for any given geometry, the wavefunction (4.12) is still not
completely determined by the conditions (4.15) and (4.16) so that the further orthogonality

condition
(tyl(casag —cas2— %)) = 0, (4.17)

can be usefully imposed. It is further shown (appendix 5) by maximizing the quantity (4.16)
that the equilibrium bond angle is predicted to be 90° for which geometry the coefficients ¢,
(4.12) are¢; = %2 ¢, = tand ¢y = ¢, = F5. This shows through (4.11) that at the equilibrium
bond angle the four hybrids are ,
i) = 23e[V3(lp3>—p9)) —lp - —[p - D],
[ts) = eye[—|pH +[p2)—y3(lp —H+[p - D],
lts> = wye[—3(IPD+IpD) —lp - +[p - D],
te) = 2vel = [PH =[P +3(lp =1 —p - )]
Use of the results (3.9) shows, after expressing the py; as py; = F7s(p,—ip,), that the large
components of the hybrids (4.18) are

[ty = 3[1(p, +75P2) &) — | (P +75P,) BY + il py o)1,
ltodr, = — 3| (Po + 75Px) B + | (P + J5p,) &) — 75i|py B,
ltad, = 3[](—p.+7Pa) &) + | (P2 — JsP.) BY +5ilp, )],
[tadr, = — 3| (= p.+75P2) @) — [ (P2 —73P.) @) — 7si|p, BD]-

(4.18)

(4.19)
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Since F5(p,+p;) and Jz(p,—p,) are o orbitals pointing along the E-H; and E-H, bonds
respectively, the large components (4.19) are written more transparently as

ltr = 2\/\3/, |72 (P2 + p2) X_ >_\/2\/3 |72(Po— P2) X4) + F5i|py T(x++x—)>a

ltadr, = 2~/3 |T<px+pz)x+> ~/2~/3 |72(Pz— Po) X_) + Fsilpy e (xs —x_) ),

lt3>L = 12-*;/\3/ |7—2(px pz) ~/2«/3

+4/3 - .
lt4>L = 2\/\:3/ |7%(px—pz)x—>+l/§'\/—3— |§71'2‘(P2+Pz)x+>+71'§1|Pu71?(x+—x-)>: )

(4.20)

+P,) x_) + 75i|p, (% +x0)),

where |[x+ ) and |x—) are the eigenfunctions of the Pauli spin operator S, defined by

x> = Za(lad +[BY), [x-) = Ja(lad—[B)). (4.21)

The large components of the valence part of the wavefunction (4.12) are, when expressed in
terms of the hybrids (4.20), given by

[Ventval) s, = 57 [SA2 [ pa+ ) ood el e, —,x0)

—%’T‘ [195(ps — o) 51 Fely X, +x_%_)]

+Faillpys) Fe(Felx x, —x_x_) +Falx,x_+ x—x+:>)]}

{ngg3 [l‘}-(paz P: sz) :}'|X+X X_X+>]

~ 3 [F(pe+Bso) b, +xx.) |
+ﬁ%l[lpus2>:}E(ﬁlx_x-—x+X+>+7%IX+x_+x-X+>)]}], (4.22)

where s, and s, are the spatial 1s orbitals on the hydrogen atoms 1 and 2 respectively.

The nature of the bonding in the dihydride can be deduced by examining the large compo-
nents of the valence part of the wavefunction because these essentially determine the interaction
energy as discussed in §3. It should be noted that the orbital 75(p,—p,) bears the same spatial
relation to the 1s orbital on proton 1 as the n symmetry term in the large components of the
orbitals |[v) bears towards the hydrogen s orbital in a p-H bond, (3.1). Thus both the overlaps
$s1l72(Pz—Pp.)) and (sy|7z(p,+Pp,)) vanish at the predicted bond angle of 90°. The large
components (4.22) thus show that each bond consists of one term of the non-orthogonal
Heitler-London singlet type plus five terms of the orthogonal triplet type. The non-orthogonal
Heitler-London singlet component in each bond is slightly less ([(1+ 4/3)/24/3]% = 0.6220)
than that (2) in the p-H bond (3.1). Consequently, with the order of an orthogonal triplet
bond taken to be one half as discussed previously (Pyper 19804) each of the bonds in (4.22)
is predicted to have an order of 0.811 rather than § as predicted for a p—H bond (3.1). This
description cannot be regarded as entirely complete, however, because it neglects the inter-
action between the bonds. Although imposition of the condition (4.17) reduces this interaction,
it is still not entirely absent because the large components of |t,) and |t,) overlap with |s,x )
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and |s,x ) respectively, which are functions involving the hydrogen atom to which the hybrid
is not bonded. The overlaps {s,x_|t,);, and {s;x_|t;);, are similarly non-zero. These non-
vanishing overlaps give rise to two repulsive terms of the same form as the exchange contri-
bution (involving f’lz in (3.3)) to the interaction energy Eint(3Z) predicted by a non-orthogonal
Heitler-London triplet wavefunction, (3.11a). The coefficient multiplying these two terms is
12(4/3—1)2 (= 0.045) which suggests that the overall order of each p—-H bond in (4.22) and
hence (4.12) should be taken to be 0.766 (= 0.811-0.045) rather than 0.811. Although analo-
gous destabilizing interactions arise in non-relativistic valence theory, it appears that they are
less unimportant in the present relativistic problem. Thus although both the sp and sp? hybrids,
used to describe the electronic structure of BeH, and CHj respectively, overlap with the hydro-
gen orbitals to which they are not bonded, these overlaps consist of two distinct spatial integrals
which enter with opposite signs. For example in BeH,, the overlap between s, and the hybrid
72(2s +2p,) which is bonded to hydrogen atom one is 75(<s5|2s) —<s;|2p,)), where both
{s5|2s) and (s,|2p,) are positive. Clearly there is an internuclear separation for which this
overlap vanishes. However there is no corresponding cancellation in the overlaps of the type
{ssX, |t )1, responsible for the destabilizing interaction of the two bonds in (4.22) and (4.12).

Evidence that the methods used here to investigate the bonding in H-E-H are not un-
reasonable is provided by applying them to the corresponding non-relativistic problem. Since
the p, orbital clearly plays no role in the bonding, the expression (4.6 ) for the hybrids forming

the bonds becomes
|t1> = dllpza> +d2|pxa> +d31pz B> +d4lpxﬁ> (4'23)

The three further hybrids |t,), |t;) and |t,) are defined from (4.23) by relations identical to
(4.1) except that the 4 x 4 matrix X, used to define I,:Iq, t (2.12), is replaced by the 2 x 2 matrix
ob. The conditions (4.9) and (4.10) then show that d; = +d, and dg = +d,. It is again found
that the wavefunction is not uniquely defined by (4.15) and the condition of maximum overlap,
and hence that the further condition (4.17) must be imposed. It is again found that the bond
angle, predicted by maximizing the overlap, is 90° and hence, through an equation of the
type (A 5.11), that the valence part of the wavefunction is

YR (val))y = S| Je(P,+Pa)s1) FeloB— Boud] [[Je(Po— Po) so) s @B — Bod]}.  (4.24)
This consists of two essentially independent Heitler-London non-orthogonal singlet covalent
bonds, each one being formed between one of the hydrogen 1s orbitals and a pure p, orbital
directed exactly along the bond. It would have been impossible to have had any confidence in
the predictions for the relativistic problem if this result, which is a standard part of non-
relativistic valence theory, had not been obtained.

It has been shown, by constructing a wavefunction consisting of two Kappa-valence bonds
of the type (4.1), that the ground manifold of a heavy element having two electrons occupying
a Dirac-Fock p orbital can bond two groups each of which is described non-relativistically as
having an unpaired electron in a o orbital. Each of the bonds is predicted to be slightly weaker,
having an order of 0.77, than the bond, whose order is §, formed between such a group and
the ground state of a heavy element having a single valence o electron. The bond angle in
these divalent compounds is predicted to be close to 90°. It should be pointed out that these
conclusions do not necessarily apply if the bonded groups have valence m electrons.
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(8) The relativistic molecular orbital description of p? dihydrides
(1) The linear geometry

The high symmetry of the linear molecule enables the relativistic molecular orbitals for this
geometry to be calculated readily. However, it does not appear to be possible to calculate
the molecular orbitals for a bent H-E-H molecule simply withoyt either making the Huckel-
type approximation of neglecting overlap or using some of the results of the Kappa valence
method. Nevertheless it can be shown without recourse to either of these two approaches that
relativistic molecular orbital theory unambiguously predicts that an H-E-H molecule in
which the heavy element (E) remains in its ground p? manifold will be bent. This prediction
can be made because the readily calculated molecular orbitals for the linear molecule can be
used to construct a Walsh-type diagram (Walsh 1953) valid for small angles of bend.

It was shown i in §2 that relativistic molecular orbitals for linear AB, molecules are eigen-
functions of j,, H,: and f,. The relations (2.31) and (4.4) show that, out of the eight sym-
metrized basis functions that can be constructed from the four p orbitals and the four hydrogen
orbitals, the four functions |p2), |p —4), Fe(|s1 —3)—|s; — 1)) and F5(|s;3) + [s. 1)) are eigen-
functions of H, .+ of eigenvalue i while the functions lp —3), Ip%), J2(|s13) —[s23)) and
Fe(|s1 — 1) +|ss —})) are eigenfunctions of H, ¢ of eigenvalue —i. If the atomic orbitals |x,m)
in the expansion (3.28) for the molecular orbitals are replaced by symmetry-adapted functions,
there are no non-zero off-diagonal matrix elements of the molecular Fock operator between
any one of the four symmetry-adapted functions having H, -eigenvalue i and any one of the
four functions having eigenvalue of Hz ¢—1. It follows from this result, the vanishing of all
the Fock matrix elements between pairs of functions dlﬁ'ermg in the m; ,quantum number,
and the assumption that the Fock matrix elements (pmlF m|pm) and (s1m|FM|slm) are equal,
which is consistent with the postulate of purely covalent bonding, that the relativistic molecular
orbitals for the linear geometry are - :

|61 —3—1i) = ZeSillp =B +F(lss =3 —lsa = 1)), [931i) = Fe([s:3) + 52 3)),
|6 —3—1i) = 7Sllp =1 —Fe(ls =1 —[sa = )], |93 —1i) = |pd),

[013 —1—i) = JSi[|p3) +Fe(lsi 3> —[s23))), [0 —31—i) = Fe(|s; = 3> +[s. — 1)),
|23 —1-1) = JeSul|pd) —Fe(|s1 3> — [s28))], [6—3—1-i) = [p—$).

Here the notation of §2 is used and §; and §, are normalization constants which become unity
in the limit that the overlaps {p}|s,}) are negligible. The result (2.18) shows that the orbitals
|6 mipi) and |¢,—mi, —i) are degenerate. There are two bonding, (|¢, —%—1i) and
|¢,3—1-i)), and two anti-bonding, (|¢,—3}—1i) and |d,}—1—1i)), orbitals, the four
remaining orbitals being non-bonding. Two of the four valence electrons are accommodated
in the bonding orbitals leaving the two remaining electrons to enter non-bonding orbitals.
Each of the bonding orbitals is the relativistic equivalent of a non-relativistic three-centre
bonding molecular orbital. The arguments used in §3(c) to investigate the molecular orbital
description of p-H bonds show that the bonds formed by occupation of these relativistic
molecular orbitals are weaker than those resulting from occupation of a non-relativistic three-
centre bonding orbital because the large components of |¢; —} —1i) are

(4.25)

|¢1 —3-1i),=(1 —%S%)* {(1+2£2 <S1|Pz>)_ir |715[*/2Pz+ VE(s1—55)] B>}+71€SI |p_ya). (4.26)
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In the derivation of this result the normalization constant §; was expressed in terms of the
large components. Since the fraction 352 of the density derived from (4.26) does not contribute
to the overlap density responsible in molecular orbital theory for binding the protons, the
result (4.26) predicts that the bonds in the linear molecule will be weaker than a non-relativistic
three-centre two-electron bond which is itself significantly weaker than a normal covalent
single bond.

_For nonlinear geometries, the molecular orbitals cease to be eigenfunctions of j, and 1,
although they are still eigenfunctions of I’:Iz,t. Hence the off-diagonal Fock matrix elements
between any two orbitals having the same I:I,, -eigenvalue will be non-zero and consequently
the molecular orbitals for the bent molecule will be linear combinations of the functions (4.25).
For small displacements from the linear geometry, the most important mixings are those
within the two pairs of orbitals |$31i) plus |¢pg — 1i) and |¢ —}1 —i) plus |¢ —§ — 1 —i) because
these pairs are degenerate for the linear geometry. Both of these orbital mixings produce two
new orbitals, one of lower and one of higher energy, the previously non-bonding electrons
occupying the two orbitals whose energies have been decreased which therefore acquire
some bonding character. These arguments of the type originated by Walsh (1953) therefore
show that relativistic molecular orbital theory predicts that H-E-H molecules will be bent.

(ii) The nonlinear geometry

For the bent molecule, there are four relativistic molecular orbitals denoted |$,i) in the
notation of §2(¢) which are eigenfunctions of I?I,,t with eigenvalue i, that can be constructed
from the valence p orbitals of the heavy element and the hydrogen orbitals. The remaining
four valence molecular orbitals denoted |$, —i) (¢ = 1, ..., 4) which are eigenfunctions of
I':IM of eigenvalue —i do not need to be considered in detail because it has been shown in
§2(b) that each of these is degenerate with the molecular orbital |$,i) from which it can be
generated by using (2.18) with ¢ = .

The four molecular orbitals |$,i) can be calculated by expanding them according to (3.28)
replacing the Dirac-Fock atomic orbital basis |y, by the four symmetry-adapted combinations

P2 Ip—1) e (Isid)+1s.3)) and s (Isy =3 = s, — ).
The molecular Fock hamiltonian iy can be expressed as
Py = Pret f’m + Vg, + Popre + Vot

where f,};h and ?H, are the potentials due to the protons of the hydrogen atoms 1 and 2 respec-
tively, Voprr is the total coulomb plus exchange potential due to the core of the heavy element
and f};u is the sum of the coulomb and exchange potentials generated by the four valence
electrons. Invoking the atomic Dirac equation (3.75) satisfied by the hydrogen orbitals shows
that the Fock matrix elements (pm]f‘Mlylg(slm’ +s,m’)) can be expressed as

<pm|By|Fa(sym’ £5,m)y = J2(Egpmlsym’y+<pm|Vig,|sym’y + pm|Voppn + Vemlsam'y). (4.27)
In (4.27) the identity (pm|Fyls,m’) = (pm|H;1FyH, (|s,m’) and the relations (2.31) have
been used to relate the matrix element {pm|Fy|s,m’) to (pm|Fy|s;m’). Since the expression
(4.27) contains no terms linking the large and small components, these matrix elements can be
approximated by just the terms involving the large components because these will be greater
by a factor of ¢? than those involving the small components. The qualitative features of the
42 Vol. 304. A
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bonding will be revealed by both neglecting the three-centre integrals (pm|VH |sym”) which
will be small and by taking the quantities (pleE;DFE+vaal|s1m » to be proportional to the
overlap integrals {pm|s, m'). With the further assumption that the bond lengths are independent
of the bond angle, it follows that the matrix elements arising in the evaluation of (4.27) between
the spinless one-component functions p,, p, and s, can be expressed as

Eg{p,|s;)+ (po| Vpr + Prals,) = Fsina, © (4.280)
Eg{p,|sy) + <ps| Peprn + Peutlsy) = Feosa, (4.285)

where F is the value of the quantity (4.285) for the linear geometry (¢ = 0). Evaluation by
these methods of the matrix elements of the molecular Fock operator between the four sym-
metrized basis functions having eigenvalue i of ﬁm shows, with the use of (4.27), the large
components (3.9) and (4.28), that this part (Fy;) of the Fock matrix Fy; (3.29) is

pt)  Ip—3 F(add+]s%d) Fls-1D—|s2-1)

d 0 —Fsina 0
_ 0 d FsFsina F5F cos a
Fau —Fsina J3Fsina d 0 ’ (4.29)
0 JsF cosa 0 d

where the diagonal elements have been taken to be equal to ensure consistency with the idea
that the bonding is purely covalent. In the same approximation used to calculate the matrix
elements (pmlﬁ‘MI;]‘-g-(s,m'iszm’) ), the two elements (p%|f‘M|p—%) and’ (ﬁ(s1§+s2§)|?m
|7 (s; —% —s, —3)) vanish. Use of the Huckel-type approximation of replacing the overlap
matrix in (3.29) by the unit matrix enables these equations with Fy; given by (4.29) to be
solved analytically to yield the two bonding orbitals |¢,i) and |¢,i) of energies ¢, and ¢,
given by .

€, = d+ J3F[1+ (1 -3 cos? asin? a)i]t = d+b1,} (4.30)

€ = d+4J3F[1 —(1-3 cos? asin? a)i]t = d+0,.

The two remaining orbitals | ¢4i) and |$,i) of respective energies d— b, and d— b, are the anti-
bonding equivalents of |$,i) and |$,i). The results (4.30) show that both the orbital energies
and the coefficients ¢;; (3.28) depend on the molecular geometry. It is not possible in any
simple way to determine the equilibrium bond angle by minimizing the total energy of the N-
electron relativistic molecular orbital wavefunction. However, the success of Walsh diagrams
(Walsh 1953) in explaining molecular geometries indicates that the orbital energies or some
quantities closely related to them play an important role in determining the geometry even
though the theoretical basis of Walsh diagrams is not absolutely clear (Buenker & Peyerimhoff
1974, Ferguson & Pyper 1980). This observation suggests that the equilibrium bond angle can
be determined by minimizing the sum (¢, +¢€,) of the energies of the bonding orbitals that are
occupied. This procedure yields the same prediction as the Kappa-valence method that the
equilibrium bond angle is 90° for which geometry the bonding molecular orbitals are found
from (3.29) to be

|$21) = 2ya(= [PE+43lp — D +Is: DD + e D+ [s1 =) —|s2 = 1)), (4.310)
621 = —zz(V3IPE)+|p — 3> — [s13) = |sadd +Is1 — 3D — s — 1)) (4.31%)
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The energies ¢; and ¢, of these two molecular orbitals are d+F and d+ J5F respectively. These
energies are interpreted by realizing that F as defined by (4.285) is just the resonance integral
for a non-relativistic p,~s bond in a diatomic molecule.

The discussion presented in §3(cii) shows that the bonding properties of the molecular
orbitals (4.31) can be investigated by examining their large components. Substitution of the
large components (3.9) into both (4.31) and the expressions for the molecular orbitals |¢; —i)
and |¢$, —i) obtained by operating on (4.31) with I:IM shows that the large components of the
molecular orbitals are

|2idr = Fe|[Fep. + 3(s1—52)1 B) + Fel [Fepo + 3 (51 +52) ] o),
|01 —idr = Fel[Fep. + 3 (51 —52)] o) — Fe| [Fepo + 3 (51 +52) 1 B,

|$aidr = —Fs|[3p. + 25 Fe(s1—52)1 BY + Fs|[3po +42 Fe(s+52)] ) + Fsi|py @),
|62 —idr = Fs|[3p. +°F Je(s1—52)] @) + 75| (4P, + 28 Fu(s1+52)1 B — Fsilpy B-

Since these molecular orbitals are entirely delocalized, the bonding in the dihydride is more
conveniently investigated by forming the more localized combinations

(4.32)

Ly £ ) = 7e(|oaidp 2|61 —id1), Lot ) = Fe(|deidn £ |de —i)L)
given by

|L1+ )Iu = 2%‘2'|[:%'2' :/!f(pz'*'Pz) +71'2_51] d) _71_2.“:71_2- :}f(pw—pz) +i§52] B)a )

Ly = 1 = Fe|[Fe Fe(p. +Pz) +Fe51] BY + Jel [Fe Fe(pz — pe) +Fese] o), ;

|Lo+ 1 = Fel[Fs Fe(Pz+p2) +Fesid o) + 2| [F6 Fe(Po—p2) + Fesl B (4.33)
+76i(|py @) — [Py B))s ;

|L2 _4>L = _:}?I[ﬁ :%f(pz'l"pz) +71'fsl] B) +71§|[71'§ ﬁ(px_pz) +71—2- Sz] d)
+76i(|py @) +|py B)).

These results show, since the orbitals Jz(p,+p,) and J(p,—p,) are p orbitals orientated
along the E-H, and E-H, bonds, that the two orbitals |[L, + );, and |L,— )1, are both equal
mixtures of two fully bonding localized molecular orbitals while |L;+);, and |L,— )y, have
non-bonding p,-components. Since the non-bonding fraction is 4, this might suggest that the
order of each E-H bond is § because occupation of the fully bonding localized orbital |L, + )
by one electron contributes } to the order of each E-H bond. However, the bonding properties
of the molecular orbitals |L, + );, must be still further reduced compared with those of |L; + )
because if the orbital J[7:(p,+p,)+s,] is fully bonding then the normalized orbital
7eN[Fs(p, +pz) +5] (N is a normalization constant) cannot also have this property. The
latter orbital is a linear combination of the fully bonding orbital J5[J:(p, +p,) +s,] plus the
corresponding fully anti-bonding orbital. Although it might not be useful to pursue this
observation quantitatively, it should be pointed out that the prediction that the bond order
is further reduced by anti-bonding terms exactly parallels that made by the Kappa valence
method.

The identity between the molecular orbitals (4.31) and the forms for the molecular orbitals
suggested by examining the Kappa-valence method is evidence that both the equilibrium
bond angle predicted and the molecular orbitals calculated by neglecting overlap are not arti-
facts of this neglect. Since it is the overlap between the spin orbitals |J(p, +p,) @) and |s; o)

42-2
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that is responsible for the bonding of the first hydrogen atom in the non-relativistic wavefunc-
tion (4.24), it follows that the localized molecular orbitals corresponding to the bonds are
Fe(|7e(p2 +p.) @) + |5, 0)) and Fe(|Fe(pz—p.) &) +|s;2)). The delocalized molecular orbitals
can then be calculated as linear combinations of the localized ones. The localized relativistic
molecular orbitals derived from the wavefunction (4.12), after use of the results ¢; = ¢, = 75,
therefore take the form

L+) =8 Felltd +Fe(lsa 3> —ss — D)1,
=) =8 F[—[t) +Fe(|si 3>+ |51 —$))),

flo+> = 8" Felltad+ Flsad>+ s =], (439
Lo—) = 8 F[—td+Fe(—Is:3>+ 152 — 31,
from which the delocalized orbitals
[6:11) = 7K' ([LL=)—]1=)), |$1) = FK(|li+ )+l +)), } (4.35)
|61 —i) = K (IL+)—|L+)), |d2—1) = ZK(|L—)+]|l,—)) '

are derived. Here §’, K and K’ are normalization constants which become unity in the limit
of small overlaps {t|s,m). The results (4.34) show, after substitution of the forms (4.18) for
the hybrids |t;), that the molecular orbitals |$,i) and |¢,i), (4.35), are identical to (4.31a)
and (4.315) respectively, after (4.31a) is multiplied by K'S’ and (4.315) is multiplied by KS".
The factors K'S’ and KS’ become unity if overlap is neglected so that the molecular orbital
and Kappa valence methods yield the same result when the identical neglect of overlap
approximation is made in both approaches.

5. CLOSED p? SUBSHELLS

In this section the Kappa valence method is used to examine whether an element described
in Dirac-Fock theory as having two valence p electrons, which therefore constitute a closed
p? subshell, can form a covalent bond to a hydrogen atom without invoking a valence state
in which electrons are partially promoted from p into p orbitals. Non-relativistic molecular
orbital theory, in its simplest form, predicts the bond order in the unknown HeH molecule to
be one half whereas valence bond theory unambiguously predicts that the He-H potential
energy curve is purely repulsive. This shows that the interaction between a closed p? subshell
and a hydrogen atom is much better investigated by using the Kappa valence method than by
using relativistic molecular orbital theory. ‘

‘"The Kappa valence wavefunction describing the interaction of a hydrogen atom with the
ground state of a heavy element having two p valence electrons is

Vew) = 8 (|core)| 1D ~ Bls ~ ). (5.1)
Here § is the normalization constant given by
§=(1-4-Hp-H9H, (5.2)

if the overlaps between the core orbitals and the hydrogen orbital are neglected. With this
assumption, the purely electronic energy of |,,) obtained as the expectation value over the
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Brown hamiltonian is found (stage 1 of § 3 (a)) to be
E = S¥[(1—<{s =3[P — 3% (Ecore + CZ c|Vale)+ <p%|9¢D +Vorer|PE))

+<p — 3|+ Vowonl B — 4D+ <5 = 4 Pp+ Vowcsls — 1+ (p3p — 7' PP — 1

— (P3P — &lr2'|P — 5D + (Pis — 3[r'|Pds — 3) — (Pis — &|ri'|s — 4PE)

+{P—bs — 32! IP — 3 -H-P-is s - - -2 s -

x (<s —5[9? "'VDFCE|15 =) +<pis — §|ra'|PED — 5) — {Pds — 32" [P —1P3))], (5.3)
where all the orbitals used to construct the wavefunction (5.1) are taken to lie entirely w1th1n
some positive-energy subspace. In (5.3) # p 1s the one-electron hamiltonian (2.3) and VDFCE

(= chc-f{c) is the electronic Dirac—~Fock potential generated by the core orbitals. The p
valence orbitals of the heavy element (E) satisfy the atomic Dirac-Fock equations

(Brco.+ Vum + Vopw) [Pm) = e5|pm), (5.4a)
with I?DFE = I7])5‘015 +7n=2i% (j B — IA<r>m) (5.45)

which contain no off-diagonal Lagrange multipliers because the core p? configuration of the
heavy element contains only closed subshells. As a preliminary to extracting the interaction
energy it is useful to rewrite (5.3) in terms of the potential energy operator Vypg

Exv = core+§ <C|I7H|C>+<p l‘%zD'i'VDFL‘[p2> <p2P %I Ip% >

+<PIP — 3|rizt|P — 3D3) + S*[<P — 3|#p + Vows|P —
+ (s = 3[#p +Vowuls —3)—2(p — s = 1) s — 3 Ap + Vorulp — 1], (5.5)

where (5.2) has been used. The interaction energy is extracted (stage 2) from the total energy
(Ep.v), obtained by addition of the internuclear repulsion, Zg/R to the electronic energy
E,, by making the usual assumption that the core orbitals do not overlap with the hydrogen
orbital so that

"Ul
NIH

3 (elfile) = = (Zu—2)/R. (5.6)
This result taken in conjunction with (3.76) and (5.44) enables (5.5) to be expressed as

ETKV = core+2€§_ <13%I3 ”%‘rﬁllp%p _%‘) +<13%13 "‘%lrl_lep _%p%>+EH
+<P}Valpt) + R+ 82D — §|VulDp — 3 + < — $|Vae +Vorsls —3)
—<(p—3s =16 —HVa+Var+Vors|P —$)] +RL (5.7)

By noting that the total energy Ey; of the isolated heavy element can be expressed as
EE = Ecore + 26-{) - <13%15 - %Irﬁl‘p%p - %) + <p%p - %Irﬁllp - %}5%% (5‘8)

the result (5.7) shows, when taken in conjunction with (5.45), that the interaction energy is
given by

Einy = <P§| HI H+R- 1+Sz[<P—*|A |I_3 3 +<s _lII}NE"'VDFCEIS -3

+ (s — 3ph|riz*|s —4p3) — (s — $pilri'|Pis ‘l>+<5"§P |’12 Is—3p—%>
(s =3P 3P -3 -5 <P —-s - —“‘V +VNE+VDFCE|15 3
+<s — 3pilrist|P — 3P%) — (s — 3pElri!|PED — )] + R (5.9)
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After retaining only the large components and using the results (3.9) (stage 3), this interaction
energy is transparently written in terms of purely spatial integrals as

Exnt = 3(<PolPalpo} + B~) +(<py|Palps) + R-) + 4 [Va(so, Pos 3) + N5 +3(02+Cy), (5.10)

where a A
Np(a; by k) = (1-k<a|b)?)-({b|Vg|b) + (a|#V&|a) + ab|ris'|ab) + R-1

—<a|b)<b|Fy + 4F + R-1|a) — (ab|rz!|ba)), (5.114)

N = (1= 4¢sal oY) [<sol #lso) + CsoPolrsoPo) |
— {Polse) ({s0| 4V&|Po) + 38 Pol iz |PoPo) + §<GsoP1l' PoPi))],  (5.115)

Or = (1= 5ol o) ((Pul¥alPs) + <sol $Felse) + CsoPylriasops)

+ R — {3 Py |73z | P150))s (5.11¢)
Cr = (1= 1¢50lPoY®)~ (<50l #7ls0) + CSo Pl [so Py ). (6.11d)

Here I’E consists of the direct potential arising from the nucleus and the core of the heavy ele-
ment plus the exchange potential generated by the core large components in accordance with
(3.10¢) and (3.104). The utility of the decomposition (5.11) is that Ny and Op are to within
the overall factor (1 —4(sy|p,)?)~?, which is close to unity, identical to the interaction energies
(3.12) predicted by the non-orthogonal Heitler-London triplet and orthogonal triplet wave-
functions because the potential %VE behaves as — 1/r for large distances r from the nucleus of
E. Hence, with the orders of pure non-orthogonal Heitler-London singlet and orthogonal
triplet bonds taken to be —1 and + % respectively, the order of the bond described by (5.1)
is predicted to be zero if only the terms Ny and Oy are considered. Of the four remaining
terms, both the first two terms in (5.10) and Cy, (5.11d), are just parts of a coulomb inter-
action while Ny is composed of terms of the same form as those entering Ny. The latter is
therefore almost certainly more important than the purely coulombic terms and consequently
the bond order will be negative but greater than —3}. Hence it has been shown that a closed
p? subshell cannot form a covalent bond to a hydrogen atom when the electronic structure is
adequately described by (5.1).

It is interesting to compare the wavefunction (5. 1), for which the bond order is predicted to
lie between —$} and zero, with the function

[wst) = S (Jcored s 3 lsm — 1) |s =), (5.12)

which describes the interaction between a hydrogen atom and an element having two s valence
electrons. Although this function is built from Dirac-Fock orbitals, it does not differ from the
function describing the repulsive interaction between a hydrogen atom and a helium atom.
The interaction energy predicted by (5.12) is calculated by the methods used to derive (5.10)

to be P
Eumi(s?) = {sgo|Vulsge) + R+ Ni(s, Som, 1) + Ny, (6.13)

N’n = (1- (SoISoEy) -1 [(soEHVE|SQ> + (SoSoElflz |5050E>
o — (S0E50 (<ol %VE|50E> + (soSoE|7iz!|SerSoE))],  (B.14)

where s, is the purely spatial function used to construct the large components of the orbitals
|sg £ ). Since the energy Einq(s?) consists of a non-orthogonal Heitler—London triplet repulsive
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term plus a similar contribution Ny, the potential energy curve for the interaction of a hydrogen
atom with the ground state of an element having an s2 valence configuration is predicted to be
strongly repulsive, the bond order being at least —1. The wavefunction (5.12) differs from
(5.1) because spin orthogonality ensures that the exchange interaction between the large
components of |s —1) and |sg}) vanishes whereas the corresponding exchange interaction
between |s — 1) and |p3) in (5.9) is non-zero. Indeed it is the |p, B) portion of the large com-
ponents of |p) that gives rise to the orthogonal triplet contribution to the interaction energy
(5.10). The differences between the interaction energies (5.10) and (5.13), and hence in the
bond orders, show that an element having a closed s? valence subshell will repel a hydrogen
atom more strongly than a heavy element having a closed p? valence subshell. This difference
suggests that although there is clearly an analogy between a valence inert gas configuration
and the valence p? configuration this analogy is not altogether complete.

6. BONDING IN MONOHALIDES
(a) The Kappa valence description of monohalides
(1) Interaction with the normal halogen valence state

In this section the Kappa valence method is used to investigate the purely covalent bonding
between a halogen and the j—j coupled ground state of an element having a single valence
electron occupying a Dirac-Fock p or p orbital. It will be assumed that the energy separation
between the p orbitals, denoted |pym), and the p orbitals, denoted |pym), of the halogen is
negligible. This investigation also reveals the nature of the bonding between such a heavy
element and a group containing both a single electron in a ¢ orbital and a filled shell of 4n
electrons for which the n—o energy separation is large.

The halogen Dirac-Fock atomic orbitals are taken to have the standard central field form
(2.24) as implied by the notation |pym) and |pym). Consequently these orbitals are eigen-
functions of a Fock operator that commutes with j2 as well as j,. Such a Fock operator arises
naturally by demanding that the average (£,,) of the energies of the six single determinants
of Dirac spinors, which can be constructed by placing five electrons in the six available valence
orbitals, be stationary with respect to small variations of the orbitals. The state in which the
valence orbital |w), where |w) can be either of the two orbitals |py;m) or any of the four orbitals
|prm), is unoccupied is denoted |wy,e). Then defining the generalized electron repulsion
operator éw,w, and the rotational invariant potential 7O through

Guwlr) = [ win) (1= Pr)]w/(r) (6.1)
A 6 A
V% = X Guw (6.2)
w=1

where f’m is the operator interchanging labels 1 and 2, it follows that the average energy
(E,v) can be expressed as

1 6 1 6 , A A . A P ,
Eav = 6 w2=1 E(anc) = EW‘EI w"zw <W |'}?k.e.+I{NH +I/;JHDF+ V\(IOI)I_GW,W|W >
1 6 , A A , 2 6 A(O)
=% > E (w I‘}?k.e.'*‘VNH'*‘VCHDFIW >+§ 3 w[JVk|w), (6.3)
w=1 wW$w w=1
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where I’/"NH and I%nnr are respectively the nuclear potential and the Dirac-Fock potential due
to the halogen core orbitals. After introducing the Lagrange multipliers ¢, to retain core-
valence orthogonality, standard techniques show that the orbitals that render the average
energy (6.3) stationary satisfy

(et Fm +Vompr + EP8R) [wrw) = exlwine) + 3 ec, wlen), (6.4)
H

where |cy) denotes a halogen core orbital. The Dirac-Fock configuration corresponding to the
n*p, non-relativistic valence state of a halogen is constructed by introducing the four-component
orbitals |Emg) of m; quantum number my where £ is a label denoting the spatial symmetry
of the large components. Thus one can usefully define

It 53> = VE|Prd) +Hlpai),
|tz — %) = —V3[Pa — 1) +F5|pa — 1),

|28 = ~FslPucdd + JHpad), (©5)
|za —3) = Fslp — 4>+ Vilpe — B
because the large components (3.9) show that
fabs = Poab)h |z = |Po.n°‘>,} (6.6
[m_5—$u = [P-,r%) |[zZ6—$)1 = [Po,r B,

where pﬂ,;I and p,, i are purely spatial halogen valence orbitals having m; quantum numbers
of +1 and zero respectively. The large components (6.6) of the orbitals (6.5) show that the
Kappa valence wavefunction

|Wevsd = S [|core) |coren) |pud) |pr — ) |m,md) |mgm — 1)

xFe(IvB |za =) £ V-1 |za))] = 7501 +(2,)) (6.7)

describes the formation of a covalent bond between the j—j coupled ground state of a heavy

element having a single valence p or p electron and a halogen in its normal valence state

(n*p,) in which all the = orbitals are filled, leaving a single unpaired electron in a p, orbital.

Here §'is a normalization constant (the positive sign is taken if |v) is a p orbital and the negative

sign if it is a p orbital) while |coreg) is the Hartree product built from the Dirac-Fock core

orbitals of the halogen: lcoreg) = TT (lcme(r)))- (6.8)

1ecoreg

The total electronic energy, predicted from (6.7) by taking its expectation value over the

Brown hamiltonian, is the sum of the two terms (®1|.9?B,|(D1) (= ((Déléfmld)z)) and

{®,|p:|®,). All the orbitals entering |®,) are orthogonal except for the pair |[v}) and

|ny, m3) if the overlaps {(c|cg), {c|émz) and {cg|v}), which involve core orbitals, are neg-

lected. Standard techniques then show, with all the orbitals.except |v) and |, ) denoted
by r, that

(®,]@y) = 1—(vi{m,ud)? (6.92)
(1| P pr| @) = (1= (HIm, 5 1)) B+ v} Fp+ 2 Gralv)

+<t,m}|Pp+ Z Gr ol md) — 2¢vH m, e 1<y m 3P + 3 GV
+<{my, 5 3Vt my, m3vE) — (my, m v et vin, 1), (6.90)
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where E, consists of all the terms involving solely the orbitals r. The terms involving the over-
lap (m, g %|v1) entering both the normalization integral and ((I)l|=7? Br| @, ) are exactly analogous
to those arising from the overlap of the hydrogen orbital |s—1) with valence orbital |sg—%)
when the repulsive interaction energy of the wavefunction (5.12) describing the interaction
of a hydrogen atom with a closed s2 shell is calculated. It is therefore not surprising that the
overlap (m; y 3|v}) is responsible for a repulsive contribution to the interaction energy of the
non-orthogonal Heitler-London triplet type. Evaluation of the overlap (®,|®,) and matrix
element <®ll*}?Br|(D2> is more tedious because the orbitals |v + ) overlap both |zg + 3) and
|71y, 1 £ 2). With the remaining orbitals denoted by p, each of which is taken to be orthogonal
to all the remaining orbitals in (6.7), and with h defined as

h=#p+3G,y, (6.10)
P

standard techniques show that
(@,]®;) = = (za—3v=1) Vhlza b, (6.11a)

()| By @) = =z — 3V — 1)<V 2 ) (g, 3R+ G ot o mg T w3
+{n_y, 1 “%Ihln—l,ﬂ"%>+§ <Pl'9?D+VDFE+VCHDF|P>)

—2{zg — v =) (vilh +G1'51,H Lmutt Gn_l,H—%,n_l,H—w}le%>
+<zg = 3|Gup,vplzu 3 +2{n_y1m — 3V = 1 (KvE|z 1)<z — |
+Gn1,H£,nl,H%|“—1,H =5+ Zu— 3Gy npl T m —B))

—<{n_y,u— Hv-5 <V%l“1, g8 {T,u %|GZH—é,n_1,H—%le P20 (6.110)

by using both the relations (3.5) and the results

) = it ) 6.12)

which are derived from (6.5) and (2.29). The results (6.9) and (6.11) show that the total energy
(Er4vz), including internuclear repulsion, predicted by the wavefunction (6.7) is given by

Enevs = SYS-2(Eog + Ecy + Eon_cr) + (1 — {7y, 0 31v3Y?) (3| + Vown + Veorror| P )
+{pu — %"}?D + I)/"1)1?1«: + ﬁCHDF|pH -+, m— %‘li'\l + Gzﬁ—%,zﬂ-%ln—l,n -3
+<zg — %|ﬁ|ZH =) +<{m,u %lﬁ + én_.l,n—%,n_l,n—% + é"z 3, on—4| T, m 3D
+ VR +Gr , gpn mot + Gang g [VE) — 2¢vE 1y, w3 (my, r 2]R
+Gr it nit + Com g VEY + (o, V] (1 = Pr) |1 m VD)

+ [ (zi — 3|V — 3 (VB 21 3) (P 31 9Pp + Vs + Voo | Prr )

+<{pu - %lfn + I}DFE + I7CHDF|pH -3 +<{m,u %Iﬁ + Gn-l,H—%,n-l,H-%i“L ad)
+{T_y,m— %lmn—l,ﬁ =) -2{zg —3v-5 <V%|B + énl, HimEd

+Gi s mpn el 1) + (2 — 3Gog vyl 2z )

+2(n_y, 5 — 3V — 1) (vHlza ) Czn — 3D+ Gy ey g T — 3

+<{zg — %Iéw},zﬁtl T_y,m— %))

(g — 3V =3 VR w3 <y w3 Gy ey g2, DD+ Zu Ze/R, (6.13)
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with the normalization integral given by

§ = (1—(vi{m, w12 F zg —§[v— 1) (vi|za )L (6.14)
In (6.13), Ecg is the energy of the core of the element E in the absence of the halogen, Eqy
is the corresponding energy of the halogen core while Ecg_cy is the energy of interaction
between the two cores:

A

Ey = E (CI*;?ke +&E+ 2 Ge,eflc),
Ecy = Z CHEZW +VNH+ 2 GcH oizlCs - (6.15)
Ecg_cn = Z <CIVNHIC>+E (CHIVNL|CH>+ 2 <C|G0H,CH|C>

The interaction energy cannot be immediately extracted from (6.13) because the halogen
orbitals are eigenfunctions of a Fock operator constructed from the potential VLH + VCHDF +478
whereas the matrix element between |v}) and |r;, g 3) in the fourth line of (6.13) and that
between |v}) and |zy }) in the eighth line are both taken over slightly different potentials,
However, the Dirac-Fock equation (6.4) enables these matrix elements to be simplified because
it shows that

<V%I';?k.e.+f;;\lﬂ+I}CHDF+éllnl,H%>
= (vi|n,mddew+ (V%Hél %émi md| T ud)
= (vHm, md) (my 18| P, + P + Vomor +Calmy, 1) + (V31361 — $Cimy, ey 0, m )
— VB 7y, 5 3 <my, s H3G: — 4Cn g, i mu w3, (6.164)
V3| B ye.+ VNH + VCHDF + Gzle D ,
= (vl|zaddew+ (VHIG, —$Gug i en-ilzn d)
= (V3|2 ) <za 8| Pre.+ Viw + Vompr + ColvE) + (vB[4Gs — $C.mp cmg |2 B

—<vHzad) ZadliGs—4C.a it m-4lzmd), (6.160)

(2 = P+ Vam +Vompr + Golny . — 1) = (2w —313G5— Gunt,emtlmsm — 1) (6.160)
where G, = épﬂg_pﬁg. + C‘rpn_%'pn_g + (Q:',,_,’ B4, m-4 + Gen—i, cH—$> (6.17a)
éz = épn f.rudt épn-§. re-¢+ ém, mhmutt éﬂ-l, : 00 LI 2 2 (6.175)

G; = Gy tout+Grng, pu-i+ G, i, m, Ed _ (6.17¢)

In (6.16¢) the orthogonality of the halogen orbitals causes the term involving the orbital
energy €y to vanish. After noting that the energy (Ep,) of the free halogen is given by

Epy = Ecn+§ <W|‘;?k.e. +VNH+f}OHDF|W>+w§w <W|éw'. wlw)

(W =pad,pa—% mud _1n—1 2nd) (6.18)
and invoking the relations (cf. §3(a), stage 2)

2 (el +Femorle) = - 6(Zs—1)/R,

A A 6.19
0211 {ca|Vxe+VprE|ca) = —(Zg-5)/R, ( )
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substitution of the relations (6.16) in (6.13) shows that the interaction energy predicted by
(6.7) is

Eini(kvz) = <pH%|ﬁPE‘pH%>+ {Pu _%‘ﬁFE|pH - H+{nn _%‘ﬁI‘Eln—l,H —3)+3R
+8%{(vE f}NH + I?CHDF'*' G, + ém,ﬁi,nl,n‘%'v%)
+(1¥ {2y —%|V“%> <V%lZH%>)(<“1,H%WTE‘“LH%) +R-1) — <7'51,H%1V%>
x ((v3|Vam + Vg +Vompr + G|, 1 3 + <y, HVER)+ (1= (my g 3[vE)?)
x (2 — $|Vamlzm — 3+ R F(zp— v — 1
x (V3P + Parr + Voo + Gl 2 1 + VRl 2 Y RY) + (2 — 4 Grop vyl 2 )
£ 2n_y, 1~ 3V — 1) ((VE|z 1) <zr — $Pnml oy m — 3)

+<{zg '—%|Gv§,zﬂ%‘n~l,1{ - Flrm V-5

x (v}|m, 1) (m,w3G —%,n_l,E—%|ZH 1) —R, T Ry £ 2R3}, (6.20q)
with ﬁI‘E = I//‘NE'*'I/}DFE- (6.200)

In (6.204) the quantities Ry, R, and R;, which are closely related to terms appearing in (6.16),
are defined through

A

Ry = (my, 5 3|v3) (V313G —2GConp, enp M B

— (Vi u 3D ¢y w 3H3G — 4G g il 7w 3, (6.21a)
Ry = (zg —3lv —3) V313G — $Gop g entlzu B

—<(v3|zu$)<{zun %l%Gz - %Gzﬁ—é,m—%le%% (6.215)
Ry = (n_y, 5 =3V =3 vEzadd<za — 313G —$Gun g, np| s m — ) (6.21¢)

In the last two steps of the four-step process of investigating the bonding described by the
wavefunction (6.7) the expression obtained by approximating (6.20a) by the terms containing
only large components is compared with the interaction energies predicted by non-relativistic
wavefunctions of known bonding characteristics. It is therefore useful to introduce the non-
relativistic wavefunctions

|Nabpp') = S (|corel™)|corel®) [af bR Jy [aB — Ba)), (6.22)
|sabpp’y = S (|corel®) |corelR) [aY R bR aa)), (6.23)

which describe the interaction of atom p containing a single unpaired electron occupying
spatial orbital |[aY®) with atom p’ containing an unpaired electron in spatial orbital |b{®)
The spins of the valence electrons are coupled to form a singlet state in (6.22) while they are
parallel in (6.23). The quantity |corel®) is a Hartree product constructed from the non-
relativistic core orbitals of atom p (cf. (6.8)) while the orbitals |al/®) and |bJ®) satisfy the
non-relativistic atomic Hartree-Fock equations

A
(3D +7) [ad™) = eil[al™) + 2 eoualei™),
u

Az T : (6.24)
(3D%+70) [BRF) = elF[bRR) + X ecymy|ei™,
-,
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where the potential V consists of the nuclear attraction plus the direct and exchange potentials
constructed from the core orbitals of atom p. The interaction energies predicted by (6.22) and
(6.23) respectively are, under the standard orthogonality assumptions,

Eme(*Nabpp') = (1+(aRbIF)2)~1 2NHiny(al®, I, Vi, Vi), (6.254)
Emi(3abpp’) = (1—<alR|bYF)?)-1 & NHyp(al'®, bIR, W, Vo), (6.255)
where LNHini(a, b, u,Vu) = (alV |a)+(b|V|b)+(ab|r1 *lab) + R-?
+ (a|b)<b|Vu+V.y +R-1a) + (ab|riz|ba), (6.26a)
“NHu(a, b, T, 7) = <allila) +(bIF}[b) + Cablritlab) + RS
—<a|b)<b|V, 4V + R-|a) — (ab|riz!|ba). (6.265)

The superscripts 1 and 3 in (6.26) denote that these quantities are associated with singlet,
(6.22), and triplet, (6.23), wavefunctions respectively, while the further superscript N denotes
that the valence orbitals a, b are in general non-orthogonal. In the special case of (6.23) in
which the orbitals |al®) and |bR) are orthogonal, the interaction energy (6.265) becomes

h . Emt("abpp. ) =3 °Hmt(aNR bu 3 V:u Vl-l) s (6'27)
wit
3, oHlnt(a b, ™ ) = (a|V |a) + <b|V |b> + (ab|r121|ab) + R—l (ab|r121|ba) (6.28)

The superscript 0 in (6.28) denotes that this function only yields the interaction energy when
the orbitals |a) and |b) do not overlap. Substituting the large components (3.9) into (6.20)
and expressing the result in terms of (6.26) show that the interaction energy predicted by (6.7)
is
Ein(xv2) = [1+a(Po,ulPo)* — (1= 2) 1, P11 Hal* ¥Hin(Poy Po, > T Vo)

+Xe1(Pos P1, 1> P-1. 15 Po,m)] + (1 =) [*Hint(Py; P1, 10> Vs Vi, 1)

+9Xa(Py, Po,1m, P-s, 10> Pr,)] + [a<Po. ulPo)* (<ol elpy, m) + R)

— (1 =) <Py, u|P1)* (Po, u|Ve|Po, u> + R7)] +a<p1,H|f}E|pl.H>

+(1-a) (Po,n|f}ia|Po,H>+R"l+R1 +R2}+3(<pl,HII?E|pl.H> +R-1)  (6.29)

wheret Xa(d, e £, g) = ~<(dRe+Kyld) - <d|g><g|f<e+f<,|d>,} (630)
3Xa(d, ¢, f, g) = —d|K¢+Ky|d) + {d|g) (g|Ke+K|d), .
Ifz,n = VANH + If:c'lsmF'l' g(jpx,ﬂ + 550> } (6.31)
Ve = Vxu+ Vorpr +Jo,  tpom+ 2jp_1,n-

Here f/‘éHDF, with matrix elements defined by (3.10d), is the sum of the local potential generated
by the full relativistic halogen core (6.8) plus the exchange potential generated by the core
large components. In (6.20) the terms in square brackets and Ry vanish if only the large
components are considered.

Interpretation of the result (6.29) is simplified by noting that each of the terms in the fourth
pair of square brackets is negligible because it just consists of part of 2 Heitler-London coulomb
interaction multiplied by the square of an overlap, while it is shown in Appendix 6 that the
terms R, and R, are negligible. The terms R, and R, would not be expected to constitute more
than a small fraction of the interaction energy because they only arise through the difference

+ The definition of I'/",_K, (6.31), corrects that presented in Pyper (19805).
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between the potential ¢ A{,O})I generated by the average of the six states wy,, and that arising
from the n%p, valence state. This difference only enters the calculation because the halogen
valence orbitals are taken to be symmetry adapted. The factors, a multiplying *~NHint(pg, Po, 1>
Ve, V, 1), and (1 —a) multiplying *~NHint(py, P11, Vies Vi, 1) In (6.29), show that in the small-
overlap limit the p—Hal bond described by the wavefunction (6.7) is 1 non-orthogonal Heitler—
London singlet bonding and £ non-orthogonal Heitler-London triplet anti-bonding and that
these proportions are reversed for the p-Hal bond, (6.7). The non-orthogonal singlet fractions
are readily understood by realizing that the Kappa valence bond formed between the valence
orbital |v) and an orbital whose large components have pure o spatial symmetry is, for the p
and p cases respectively, 3 and £ non-orthogonal Heitler-London singlet in character essentially
because the large components of the orbitals |v + ) have 1 and %o character. The destabilizing
non-orthogonal triplet contribution arises from the overlap of the orbitals |v+ %) with the
halogen orbitals |m., y + 4), not participating in the Kappa valence bond, whose large com-
ponents have the same spatial symmetry and spin as those of |v+ ). The fractions % and }
in the p and p cases respectively arise simply because the large components of the orbitals
|v+1) are 2 and ir in character. The two terms 'X¢(py, Py, 1> P-1, 1> Po, ) @0d 3Xe1(P1, Po, 1o
P_1, 1> P1, 1) can be simply interpreted as the exchange corrections to the purely local potentials
entering “NHini(po, Po, 1> Vies Vo, 1) and ¥ NHing(py, P1, 1> Vies V3, m) respectively. Hence if the four
terms of the type (pm,HII}EIpm, uy +R-1 are neglected, the orders of the p—~Hal and p-Hal
bonds described by (6.7) are — 4% and % in the limit of small overlaps | {py, x|Po>| and <{py, 1| P2
if the orders of non-orthogonal Heitler-London singlet and triplet bonds are taken to be 1
and —1 respectively. The actual orders will be slightly greater than —% and } because the
terms (pm’H|I7E|pm,H)+R—1 will not be negligible. The presence of the destabilizing non-
orthogonal triplet contribution to the interaction energy (6.29) shows that bonding modes
different from that described by the wavefunction (6.7) need to be examined.

The results of the last paragraph do not in fact apply to the covalent bond formed between
a halogen and a heavy element containing a single p or p valence electron because the de-
generacy in the free atom of the halogen orbitals differing only in the m; quantum number
permits the existence of a bonding mode different from that described by (6.7). However,
these results do apply to the interaction of such a heavy element with a group described in
non-relativistic theory as containing four n electrons and one o electron for which the n—o
energy separation is large. The interaction energy for such a system, which is still described
by a wavefunction of the type (6.7), is again given by (6.29) except that the terms R, and R,
are not present because the orbitals |, i + 1) and |z + 1) are now eigenfunctions of the Fock
hamiltonian for the isolated group. The prediction of a negative bond order (— %) shows that
the interaction of such a group with a heavy element containing a single p valence electron
will not lead to the formation of a covalent bond having the length and strength usually
associated with such a bond. However, since the attractive contribution to such an interaction
arises from the overlap of o orbitals while the repulsive one arises from that of © orbitals, one
cannot conclude that the potential energy curve for such a system will be purely repulsive.
One therefore predicts that there will be a very shallow minimum whose binding energy is
much less than that of a normal covalent bond at a large internuclear separation, but that
the interaction will be purely repulsive at internuclear distances corresponding to those of
normal covalent bonds. The prediction of a bond order of } shows that the bond between such
a group and a heavy element containing a single valence p electron will not be as weak as for
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the p case although the presence of the n anti-bonding component does mean that the former
bond will be very significantly weakened compared with a normal covalent bond.

It should be pointed out that the basic qualitative conclusions of this section do not change
even if the ¢ bonding orbital of the halogen is some sp hybrid rather than being pure p,.

(ii) Interaction with the optimum halogen valence state

A halogen in interaction with an element or group described in non-relativistic theory as
containing a single unpaired electron in a o orbital does not remain in its ground p}p}
configuration. It adopts instead the np, valence state, which is a linear combination of the
P ph and the excited py p; configurations, because this maximizes the overlap with the orbital
of the other group thus leading to the formation of a strong bond. It is shown elsewhere (paper
III) that for all the halogens except Astatine the excitation energies to the n'p, valence states
are negligible compared with chemical bond energies so that the optimal valence states are
essentially pure np,. Similar reasoning shows that a halogen in interaction with a heavy
element containing a single valence p or p electron will adopt that valence state which yields
the strongest bond and that there is no reason for supposing that this valence state is n'p,.
It is therefore useful to introduce halogen bonding orbitals |bg + }) and non-bonding orbitals
|ng £ 3) as linear combinations of the functions (6.5):

|bgr £3) = —to|muy, @ 3D +l2m £ 1),
g £4) = folmag £ 3D+l £ 1) ) (6.52)
satisfying {ng +}|bg +4) = O. (6.33)

The coefficients #; and ¢, are uniquely defined by demanding that the orbitals [ng +3) not
participating in the Kappa valence bond satisfy the orthogonality conditions

(ng £}[vii) =0 (6.34)

The condition (6.34) ensures that the wavefunction

[Vevn) = Sy [|core)|coren ) |pu$) [pa — 8> [nud) ng —3) Fe(|vd) |ba — 1)
t|v—-1)|bai))], (6.35)
which describes the formation of a Kappa valence bond between the halogen bonding orbitals
|bg +4) and the orbitals |v + %), does not contain any destabilizing non-orthogonal Heitler—
London triplet interactions arising from the overlap of the orbitals forming the bond with
those not participating in the bond.

The total energy (Eq,y) calculated as the expectation value of the Brown hamiltonian is
found, by making the usual assumptions of core orthogonality and invoking (6.19), to be

Eqy = Ecg + Ecy + 2({px %l’}%D + I71)1«‘13: +f}CHDF +é4|PH $)
+ <o 3| #p + Vorn + Vompr + 36—, nn_t [ nu 3) + 2R
+S2(<brd|hnlb 3+ vV uvE) F 2¢byr — 3v — 1) (vh[fip br )
+<{vibg — }|ris'[viby —}) + (vibgy — }|ri5!|v — }bg })
F(viby — ! |bav — 1) — (viby — }|riz!|bg —3vE)) + R, (6.36)
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where Sp = (14 (vi|bg )1, (6.374)
Gy = Gpgs,pr3+Gpg—3,pu-2 + Gug t,nmd + (A}nH_%’ nE—b (6.375)

by = Z+Vorw + Vorpr + G (6.37¢)

The interaction energy is extracted from (6.36) by invoking the Dirac-Fock equations (6.4)

to show (cf. (6.16)) that
(vip|bad) = (vi[baidew+ (v G, Vs’ﬂbﬁa
= (vi|br$)<bn} |hb|b}1%>+<v%|G4 of)Ile%>
—<V%|bH%><bH§|G — 47|y 1) (6.38)
and hence that
Eing(kvb) = 2({pun3 !VTEIPH >+ (g }|Vrg|ng §) + 2R1) +S§(<bﬂ%lVTE!bH%>
+ <V§|VNH +VCHDF +Gy|vE) F 2¢(by — v — 1D V3 Vau +Voupr + Gy +Vig|br i)
+(viby — §rist|viby —§) £ (viby — §|rt|v — tbud)
1 F(viby — }|rat|brdv —3) —<(viby —§|rat | by —3vE)) +R1F R, (6.39)
wit . .
Ry = (b —3v =) ((v}|Gy =470 i 3> — (vi|br 3) (br 3]G, — 47E) b)) (6.40)

In Appendix 6 it is shown that R, makes a negligible contribution to Ein¢. Before substituting
the large components (3.9) into (6.39) and expressing the result in terms of (6.26), it is useful
to note the identities

<P1,uP—l,u‘|7f21|P1,uP—1,u‘> = (Pl,upl,u'lrl_zllpl, upl,u'>3}
{P1,uP—1,w|72" | Pr,wP-1,0) = {P1, uP1,w|"22" | P1, w P10

These are derived by using the standard expansion of rp!

it = dn X (24 1) (rE/rE 2 Yiem(0, 1) Yi, (0, ) (= 1)™,

(6.41)

writing p, , as F(r,)Y; ,.(0,, ¢.) and then noting that the integrals on the left and right hand
sides of (6.41) become identical after integration over ¢, and ¢,. Expressing (6.39) in terms
of the large components and invoking (6.41) yields the interaction energy

Eun(kvb) = 2(¢py, ulValpy, 11> + (v 3 Palng 1p,+ 2R
+ {1+ [ta/a{Po| Po, u) £ to(1— a)E Py, | P]
X {txaN Hint(Po, Po, 11> Viss Vir,v) + (1 — @) >N Hing(py, P11 Ve Vi, b)
+ 245t Xint(Po> Po, 1> P1> P1, 1> Vs Vi v) + £2(1 — @) 3 °Hint(P1, Po, 11> Viss Vi, »)
+15a%°Hint(Pos Pr, 11> Vs Vir,v) F 5 o ta(<PoPo, m|71' | P-1, 1 P1)

+ {P1P-1, 175" [Po, nPo)}> (6.42)
where

Xin(d, 0,8, Vi Vi) = <d|e) <l Vo + R-g)
+ (£]g) d|Va+ Ve + R-1|e) + 2{df |ri5t|eg), - (6.43)
Vo = Ve + I;véHDF + 2(jp1 H+jnH L) — Kpl H™ KHH L (6.44)

The quantity jnH . is a coulomb operator built from the large components of the orbital
[ng 1), while KnH 1 is derived from the spatial parts of the large components of this orbital.
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Thus the matrix elements of these operators between the spinless one-component functions
|d) and |¢) are defined by

<d|jnn Lle) = 12dpy, ulrizt|epy, u) + 15dPo, u|riz'|€Po, 1 )s }
<d| nH, Lle> = £3{dp,, ulre 1|P1, ey +13{dp,, Hl"le lPo Hé)-

The notation (nH%lVElnH%)L in (6.42) denotes that the large components of the matrix ele-
ment are taken.

The terms in the first brackets in the interaction energy (6.42), which arise from the halogen
orbitals not directly participating in ‘the Kappa valence bond, resemble part of the coulomb
contribution to the interaction energy predicted by a Heitler-London wavefunction. Although
these terms are probably quantitatively non-negligible, they will be sufficiently small that they
do not determine the qualitative features of the bonding. Hence they will not be considered
further. The condition (6.34) becomes

?tca*(Po,HIPo>+tu(1"a)*<P1,H|P1> = 0, (6.46)

if only the large components are retained. This relation shows that, with the coordinate system
of figure 1 for which the overlap (p,|p,,u) is negative for the internuclear separations corre-
sponding to bond formation, the quantities #, and ¢, have opposite signs if |[v) is a p orbital but
the same sign if it is a p one. Since the quantity Xini(d, ¢, f, g, ¥}, Vir) resembles two of the
exchange contributions to the interaction energy of a non-orthogonal Heitler-London wave-
function, it follows that all the terms in (6.42) are negative except for the two exchange integrals.
These two integrals can be neglected because they will be small and moreover their contri-
bution to the interaction energy is opposite in sign to the already neglected contribution of the
non-bonding valence electrons on the halogen. Hence the result (6.42) shows that the bonding
described by the wavefunction (6.35) consists of both non-orthogonal Heitler-London singlet
and orthogonal triplet contributions, which are augmented by two further non-orthogonal
Heitler-London singlet exchange terms (Xint(Pos Po, 1> P1s P1, 1> Vs Vir,»))- The orders of the
p-Hal and p-Hal bonds are thus predicted in the limit of small overlaps to be § + 4% — 2424 ¢,
and % +32+242¢,¢, respectively if the orders of non-orthogonal singlet and orthogonal
triplet bonds are taken to be 1 and } respectively and a single term Xi(d, ¢, f, g, V},, Viv) is taken
to contribute — 2 to the bond order. Although the latter may be a crude approximation because
it neglects the coulomb contribution to the energy of a covalent bond which can be far from
negligible (Fraga & Mulliken 1960), it is sufficient to reveal the qualitative features of the
bonding. If the two overlaps {p,|po, ) and {p;|p;,u) are equal in magnitude, the orders of
the p—Hal and p-Hal bonds, (6.358), are both predicted to be %*. It is interesting to observe
that both p-Hal and p-Hal bonds are predicted to have bond orders of unity if the orthogonal
triplet contributions are disregarded entirely. If both the coulomb contribution and the
exchange integral in (6.28) were so small that the orthogonal triplet contribution was negligible,
then the approximation that a single term Xin¢ contributes — 2 to the bond order would become
quite accurate. It has been shown, regardless of the orthogonal triplet contribution to the bond
order, that purely covalent bonds between a halogen and a heavy element containing a single
p or p valence electron are not destabilized by relativity. The meaning of a prediction of a2 bond
order greater than unity is examined in §8.

The above calculation of the bond orders does not consider any possible difference between
the strength of a non-orthogonal Heitler-London singlet bond constructed from ¢ orbitals and

(6.45)


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

RELATIVISTIC THEORY OF CHEMICAL BONDING 613

one constructed from = orbitals. A ¢ bond might be expected to be stronger than a n bond at
large internuclear distances although there is no reason for supposing that this is a major
factor at the equilibrium separation. However, the success of simple valence theory, which
neglects any such distinction, in explaining the bonding in the first-row diatomics suggests
that no essential features of p~Hal and p-Hal bonds are missed by neglecting this difference.
The details of an investigation of the relative strengths of ¢ and = bonds, which would depend
on the equilibrium internuclear separation and the nature of the outermost core orbitals, lie
outside the scope of this study. Finally, it should be pointed out that the qualitative features
of the bonding deduced in this subsection, in particular the condition (6,34) determining the
orbitals, are essentially unaffected by any possible s—p hybridization of the halogen.

(iii) Alternative modes of p—Hal bonding

The wavefunction (6.35) does not describe the only possible mode of covalent bonding
between a halogen and an element containing a single valence p electron because the valence
orbitals having m; = + § are also available for bonding. Thus a calculation essentially identical
to that used to derive (6.42) from (6.35) shows that the interaction energy predicted by the
wavefunction

i) = Se? [|cored |coren) | za b) |z — §) [T, w3 |%or,m — 3
xZ(p)lpe —H-1p - |pad))] (6.47)

is given by

Eni(kvr) = 2(<po, u|Ve|po, m) + Py, ulVe|Py, u)+2R™1)
+ (14 {pa|Pr, w)?) ™ LNHiny(P1, P11 Ves Vn,n) +R;, (6.48)

where the halogen potential I}H,,, is given by
VH.K = VNH + VéHDF + 2(jD1,H +jD0,H) - KDo.H - ﬁp—:v H* (6‘49)

It is shown in Appendix 6 that the term R;, which is both qualitatively similar to R,, R, and
R, and arises in the same way, is negligible. The result (6.48) shows that the wavefunction
(6.47) describes the formation of a non-orthogonal Heitler-London singlet 7 bond of unit order.

It can be shown that there are non-vanishing off-diagonal matrix elements of the Brown
hamiltonian between (6.47) and the function (6.35). However, the energy lowering occurring
in the improved wavefunction constructed as a linear combination of these two functions
should probably be interpreted as describing correlation of the bonding electrons rather than
as a prediction of a bond order greater than unity.

The wavefunctions (6.35) and (6.47) taken in conjunction with the interaction energies
(6.42) and (6.48) do show that the function

[Weve) = Sy [|core) |coreg) [ng 3 |ng — 1) ([pE) |pr — 2D — [P — 4 Ipui))
xF5(|p3)|bg — 4> —|p —3)[bad))] (6.50)

is formally double bonded. However, since this function is ionic, corresponding to E-Hal*,

it cannot necessarily be concluded that a double bond is formed when a halogen interacts

with a heavy element containing a single p valence electron. From the Kappa valence method

one can predict only that such a bond will have an order greater than unity because the purely
43 Vol. 304. A


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

614 N.C. PYPER

covalent functions (6.35) and (6.47) will become mixed with the double-bonded structure
(6.50). The degree of mixing will depend upon the intrinsic strengths of the bonds compared
with the sum of the electron affinity of the element E and the ionization potential of the halogen.

(iv) The role of ionic—covalent resonance

It has been shown ‘that purely covalent single bonds between a halogen and an element
containing a single unpaired electron in a p or a p orbital will not be weaker than a normal
covalent ¢ bond. Any resonance stabilization of such bonds is likely to be dominated by
interaction of the covalent function (6.35) with the ionic structure E+Hal~ because any heavy
element will be less electronegative than a halogen.

The wavefunction corresponding to the ionic structure E+Hal- can be written

[Wiion) = [[core) |coren) |pud) |pr — 1) |nu ) ng —3) [badd|bg —1)].  (6.51)

The resonance stabilization of the function |{,y,) is investigated by introducing the hybrid
[Vires) and the non-relativistic function |yH%.), which is a resonance hybrid constructed
from the covalent o-bonded function |'Zg) and the ionic structure |y}, ):

I‘I’Hres) = "1|‘l’va>+52|‘l’n fon)» . (6-52‘1)
[WiTes) = A 'Zr) + AT YETn s (6.526)
where

"Ex) = (1+(PYR|pEE)?)H o (|core™Ry |corelRy |pNE o) [pXEu B)
x |pNEB) [pXFa o) |ph R phn) 7z |«B— Ba)), (6.53)
[WER.) = (|coreNR)|core ®yphx o) [pPXEa B) PN B PR R o) |pd 0t)IP uB)). (6.54)

The details of the investigation are identical to those described (§3(4)) in the discussion of
the resonance stabilization of hydrides except that the potential due to the proton, Vg, is
replaced by those due to the nucleus plus both the core and the non-bonding halogen valence
electrons. These potentials are for the functions (6.52a) and (6.525) respectively

P A P ~
Vies = Vg +Voupr + Gy, : (6.554)
VAR = Vag + PiBor +7, n — RYR —RIR . (6.565)

The qualitative difference between the resonance stabilizations of the two functions |y ),
(3.13), and |Y}XE), (3.14), was shown to arise from the difference between the two quantities
Eini(i — kv) — AEjni(kv) and Eny(i —1X) — ANRE;4(1X), which are respectively the intermolecular
contributions to the matrix elements

((‘l’ionl - <‘I’ion|\l’xv> (‘l’xvl) (‘;?Br + ZE/R) I‘l’xv)

and its non-relativistic analogue. The corresponding matrix elements responsible for the
resonance stabilizations in the wavefunctions (6.52) are

(Caton] = Wrtson|Vewn) CWews|) (e + Zo Za/R) [Vew)
= — (Vg 1on| Vevp) Eint(kvb) + /28, [(bgr }[v3) ((ba }|Vre|bad) + R)
+ (b |Ves| V) + (byr $bg — 37zt |viby — 1) — (br dbg — 3|ri!|bg —3vE)], (6.56a)
(CUNRn| — CUERon'Z) () (¥R + Zg Z/R) |'2) |
= = Vi Ea) Bt (") + (1+ <P PSR V2[<PE R P Ry (PR |Vim|pNE) + R
+{poR 0‘II’;es|Po Ra) + <po & po, 1|72 | PO E Po B )]s (6.565)
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where Eint(1Zg) is the interaction energy predicted by the wavefunction |1Zg), and HANR g
the non-relativistic many-electron hamiltonian excluding nuclear-nuclear repulsion. The
two expressions (6.56) are very similar because substitution for |by +}) from (6.32) shows
that the term (bg by — }|ri!|bg — 4v1) vanishes if only the large components are considered.
Although it is not possible to make quite such a detailed comparison between |{gres) and
| Vi) as was made between | and |[YYE), any major qualitative differences between
the wavefunctions (6.52) will be revealed by assuming that the overlaps {p, g|p,? and
{p1, u|P1) are equal in magnitude. Thus for when |v) is a p orbital, ¢, = —4/3 and ¢, = J5,
while ¢, = 75 and ¢, J% if [v) is a p orbital. By using the same approach the matrix elements
{Po, =l lepo) and {p,, g| lepl) will be approximately equal. It thus follows by expressing
(6.564) in terms of the large components that the matrix elements (6.564) and (6.565) will
be approximately equal. This shows that the resonance stabilization of a p~Hal or a p-Hal
bond (6.35) is no less than that of a bond between a halogen and a light element showing
negligible relativistic effects.

(b) The molecular orbital description of monohalides

It is illuminating to examine the bonding between a halogen and the j—j coupled ground
state of a heavy element containing a single p or p valence electron by using relativistic mole-
cular orbital theory. The results of this investigation both confirm the predictions of the Kappa
valence method and yield further insights into the bonding.

A purely covalent bond between such an element and a halogen is described in relat1v1st1c
molecular orbital theory by the wavefunction, '

|\|’HM0> = M(ICOI'@ |C°1”CH> |‘¢1%>|¢1 -3 |¢1%> |¢1 - |¢z%> |¢z -4, (6.57)

where the valence molecular orbitals are expanded in the valence atomic orbitals of the halogen
and the heavy element as discussed in §3 (ci). The expansion coefficients ¢;; and orbital energies
are calculated by solving the matrix equations (3.29) with the molecular Fock operator Py

iven b “ . N o . ,
s Y Fu = He+ Vg +Vore +Vxr +Verpr +Voar- (6.58)
Here f}m is the potential, constructed relativistic coulomb and exchange operators, due to the
six valence electrons that occupy the orbitals |¢;m) in (6.57). For both p—Hal and p-Hal
bonds, the molecular orbitals |¢,3) and |¢,4) are expanded in the three atomic orbitals
[v3), |za3) and | 7y, 1 4), the usual assumption being made that the diagonal Fock matrix
elements are equal, which is compatible with the idea of purely covalent bonding.

The essential qualitative features of the bonding arise as a consequence of both the assump-
tion of equahty of the diagonal Fock matrix elements and the smallness of the matrix element
(ZHHFMIM,H%) compared with the other off-diagonal matrix elements of Fyr. The halogen
Dirac-Fock equatlon (6.4) shows that (zH‘}léﬁe +Km +VCHDF+VVH|1:1 u}) = 0 while the
quantity {(zg %lVNE +Z j |7, m3) also vanishes if only the large components of the orbitals |z 3 )
and |n; g %) are retained. If |r) is an orbital whose large components have a sharp z-spin com-
ponent (i.e. |r);, = |f(r) &) or |r)y, = |f(r) B)), the quantity (ZHHG,, |7y, m3) vanishes if only
the large components are considered. Although neither the orbitals |c) nor the valence mole-
cular orbitals |¢;m) in (6.57), which generate the potentlal Vm, have this property, it is shown
in Appendlx 7 that the only contrlbutlons to (zH§|FM|nl,H§) not so far considered, namely
(ZnﬂVvall”l,H%) and — <ZH%|EC e|m1, m}), are sufficiently small that they can be neglected.

43-2
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Hence the matrix element {zg %|F M|%1, 5 3) can be taken to vanish. Denoting the three atomic
orbitals |v}), |%,, g}) and |zg1) by 1, 2 and 3, solution of the 3 x 3 secular problem (3.29) for
the orbitals having m; = } yields a molecular orbital, denoted |¢,4), of energy (ZH%|?M|ZH b,
which does not contain the orbital |vi) (i.e. ¢, = 0). Simplifying the matrix elements
(za}|Fylvi) and (x, H%IFM|V§) entering (3.29) and invoking the Dirac-Fock equation
(6.37a) show that the coefficients ¢,, and ¢,, are determined by the normalization condition
and

caa( (VA Pyl 7y, 53> — (VB ot VY (VB Ty, 1 3))
+ s (VB Vpotl 23> — (VBITporlvE) (VE|z d)) = 0, (6.59)

with V;,ot = V}m +K;HDF+V“1 The equality of the energy €, of the orbital |$,1) to the dia-
gonal Fock matrix element (ZH%IFMIZH 1) taken in conjunction with its composition of only
halogen orbitals shows that the orbitals |$,4) and | ¢, — }) are non-bonding orbitals containing
a halogen lone pair. The two remaining orbitals having m; = }, denoted |¢,1) and |$33),
obtained by solving (3.29), have energies that are respectively more and less negative than
(zHHFMIZH 1), thus suggesting that |¢1%) is a bonding and |$;4) is an anti-bonding molecular
orbital.

When |v) is a p orbital the molecular orbital |$,$) is just |pg2) so that it is predicted from
(6.57) that four electrons occupy non-bonding orbitals located on the halogen leaving the
remaining two valence electrons to occupy the bonding orbitals |¢,3) and |$; —3). If |v) is
a p orbital the molecular orbital |¢, $), which is non-bonding in the p case, is replaced by the
fully bonding orbital (%S,) (|[p2)+ |pa$)), where S, is a normalization constant. Hence four
electrons occupy bonding orbitals and two occupy non-bonding orbitals. The purely covalent
bond between a halogen and the j— coupled ground state of an element having three valence
p electrons has either the configuration ¢4, ¢; — 3%, 023, ¢2—3, 013, &1 —3, da3, ¢3—% or
the configuration ¢,4, ¢, — %, ¢4, ¢;— %, ¢,3, &, — 3, ¢.3, ¢, — 3. In both descriptions four
electrons occupy bonding orbitals and two occupy anti-bonding ones, while two are located
entirely on the halogen. In the p case |¢, ) is a fully bonding orbital while |¢, §) = %S;)
(|p3)> — |pu$)) is fully anti-bonding so that if |$,3) and |$;3}) are fully bonding and fully
anti-bonding orbitals respectively, the orders of p-Hal and p-Hal bonds are predicted to be
one and two while the p®-Hal system is predicted to be singly bonded. For both p-Hal and
p-Hal bonds the forms of the wavefunctions and predicted bond orders are very similar to
those arising in the Kappa valence method.

The introduction of one further approximation shows that there is an even greater similarity
between the predictions of the relativistic molecular orbital and Kappa valence methods. If
the two matrix elements <V%|I7m|nl,ng) and (v%|f/‘pot|zH§) are proportional to the overlap
integrals (v}|m, x3) and (v}|z4 1), so that

Vot 1, 185/ ot 28> = (vEm, m Y/ (vElznd), (6.60)
the condition (2.62) determining the non-bonding orbital becomes
Caa(V3| Ty, 5 3) +20(VE|2zrd) = 0. (6.(;1)

This condition is identical to that, (6.34), determining the orbitals |ng +}) in the Kappa
valence method, so that both the relativistic molecular orbital and Kappa valence approaches
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predict the same halogen non-bonding orbitals. The Dirac-Fock equations (6.37a) show that
the matrix elements (v}|Fy|n, 1) and (v}|Fy|zy3) are given by

<V%|FM|“1,H%> = €v<V%|“1,H%>+<V%|V;)ot|“1,1{%>:} (6.62)

Vi TFy|zad) = eu(vE|zu 3D + V3Vt 20 §)-

These results, taken in conjunction with the approximation (6.60), show that the bonding
and anti-bonding molecular orbitals |$, 1) and |$;1) are, with ¢;, defined to be positive,

|¢1%> = 2/1_2S1[|V"%> + (e30| Ty, 11 §) — C20| 20 %))]’} (6.63)

|ds3) = Vlz“S?,”V%) — (C32| Ty, 1 3D — €202 3))1-

If the magnitudes of the two overlaps {py|p, 1) and {p;|p,, u) are taken to be equal, the large
components of |¢,3) become

[613>1 = Silva 7z F (Po—Po, u) @) + (1 _a)éVIEI(Pl +Py,u) B (6.64)

This shows that |¢,4) is a fully bonding orbital even though it is partially o and partially =
in character. This confirms the tentative conclusion of the last paragraph that the orders of
p-Hal and p-Hal bonds are one and two respectively and that the p3-Hal system is singly
bonded. The charge distribution in the wavefunction (6.57) describing a p—Hal system is not
uniform so that the assumption that the diagonal Fock matrix elements are equal may be
quite poor. A fully self-consistent treatment might reduce the predicted bond order so that
even for p—Hal bonds the relativistic molecular orbital and Kappa valence approaches agree
in predicting that although the bond order is greater than one, it is probably not as large as two.

7. THE MOLECULAR ORBITAL DESCRIPTION OF p? DIHALIDES
(a) The linear geometry

Only relativistic molecular orbital theory will be used to investigate the bonding between
two halogens and the j—j coupled ground state of a heavy element containing two valence
electrons occupying Dirac-Fock p orbitals. The Kappa valence method is not considered
because the molecular orbital results show that it is not possible to construct a localized de-
scription of the bonding of the type presented in §4 (4ii) for dihydrides for either the linear or
the bent geometries of the molecule. The only bent geometry considered in detail is that for
which the Hal-E-Hal bond angle is 90°. The basic features of the bonding are revealed by
considering only this and the linear geometry, while it is shown in Appendix 8 that other
geometries differ only in yielding less simple forms for the molecular orbitals.

For the linear molecule, the molecular orbitals, denoted |$,mi,k,), are eigenfunctions of
the operators j,, I, and IfIz,t. Both the valence orbitals of the heavy element E, |p3) and
|p —1%), are antisymmetric under I; and are eigenfunctions of ﬁz"t with eigenvalue z. The
result (2.29) shows that out of the 16 valence orbitals only those eight having m; quantum
numbers of either $ or —} need to be considered explicitly. The assumption that the system
can be described as consisting of two halogens covalently bonded to the element E implies
both that the diagonal Fock matrix elements in the atomic orbital basis are equal and that the
interaction of orbitals on different halogens can be neglected. With these assumptions, after
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constructing symmetry-adapted combinations of halogen valence orbitals, the Fock matrix
factorizes into 1 x 1 and 2 x 2 blocks except for the 3 x 8 block arising from the functions

P=3(zm1 =8 +|zm,:—1))/J2 and (|7 u,-3)+ |7 s, m,2 —3)) /42

The 1 x 1 and 2 x 2 blocks yield the molecular orbitals reported with their large components
in Table 1. The 3 x 3 block has a form exactly analogous to that arising from |v}), |zg}) and
|y, 13) in the discussion (§6(5)) of monohalides. Since similar considerations show that
75(C2m,1 — ¥ +<zm,. - }) Fy Je(Im gm0 — 3> +|n_y,5m,. — 1)) will be very small, it follows
that one of the molecular orbitals obtained from the 3 x3 block will be non-bonding and
located entirely on the halogen. After evaluating the remaining off-diagonal Fock matrix
elements by invoking the atomic Dirac-Fock equations (6.374) and then using the approxi-
mation (6.60), one obtains two further molecular orbitals, one bonding and one anti-bonding.
These three molecular orbitals are

|61 —3-10) = F:Sf|p — 1)+ [ T2 (17,0 =D +7rm,2 — 3))
= 72 (|zm,1 =) + 2w, - )1}
|6 =3=18 = cpp Fa(Im_y, w1 =B+ me =) +eae Fe(|2m1 — 1) +2m,2 - 1)), (7.1)
|65 —3—1i) = Z5S{p D —[(Ca e (Irp m1 =P+ 7w —8))
- = Fe(lzaa =B +|za — )

where the two positive coefficients ¢,, and ¢;, are determined by (6.61).

TABLE 1. MOLECULAR ORBITALS FOR LINEAR p2 DIHALIDES IN THE LIMIT OF :EQUAL OVERLAPS
[<Po, & |Po>| AND <py, 1 |P2)

energy

relative

relativistic molecular orbitals todt
|68 —13) Sil7 IP1)+3(Pa.1 8) + P 1)) N2F
|63 —1i) Salf [P3)—3(|Pm.1 )+ [Pa.2 1))] —2F

|& —3—1i) Sl —-H+Ek (e -+ | an.—1))
Vi (|zan =P+ |z —1))] V2F
[6: —3—1i) VE& (moyma =D+ me =)+ A (250 =8+ |28, — 1)) . 0
lbs —3—1i) Slyzlp =8 -FF(r e =+ (1w — 1))
V +ﬂ/§;/12'(|zn,1 —3)+|z,: — 1)) —J2F

|d81—=1) 7 (IPz,12)— |Pa.2 ) 0

[dy—31-10) vlf(lzn,l —3)—|zg,: - 1)) 0

|de —31=14) 'fz‘ (Im_y 1.1 —*>—|ﬂ—1.n.z -1)) ) 0
‘ large components '

[ §—1d),, Sil% Prt+ 3Py w1+ Py m2)] 0D

[de 3 —11), So[% P1 —#(Prr 1+ Prm2)] @)

|6y —3—1i), $1{v& [} Po, & — 3 (Po. &1+ Po. 2, 2)1 1B) + 5 [ P-1+ 3(P-r.m 1+ Py 2) ] J0D}
[bo —3—1i)y Vi (P-rm1tPorm o) |0)+F5 5 (Pom1tPoxe) |B)
|63 —3—1i), So{VE[ Po.u+ 3(Po.m 1+ Po. 1. 2)] [BY + 75 [ P-1 = #(P-1. 5.1+ P-1,5,2)] |0}
[b31—i), J¢ (PLr1—Prn.2) @)
|6y —31—i)y ¢ (Po.m,1—Po.m.2) |B)
|62 —31—1), #¢ (P-r.m1—P-rm2) |0

t In the limit of zero overlap F is defined by (7.75).
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For the case in which the overlaps {pg, |po) and {p, u|p;) are equal in magnitude the
molecular orbitals (7.1) are given in table 1. The large components of |¢, —} — 17) show that
this molecular orbital is, like |¢, 3 — 17}, a full three-centre bonding orbital. There are twelve
valence electrons to accommodate in the 16 molecular orbitals consisting of the eight (table 1)
haviAng m; = § or —% plus the further eight obtained by applying either of the operators IfIx,t
or H, ; to those reported in table 1. Eight of these electrons occupy non-bonding orbitals
located entirely on the halogens leaving four electrons to occupy three-centre bonding orbitals.
This result which shows that two halogens are bound by four electrons strongly suggests that
each halogen should be regarded as singly bonded to the heavy element.

(b) The nonlinear geometry

Since the molecular orbitals of the bent molecule cease to be eigenfunctions of either j, or
1, it follows that all eight symmetry-adapted combinations of atomic orbitals having eigen-
value ¢ of Hz . can interact. These eight combinations can be expressed in terms of the two
orbitals |p3) and |p — %) and the six eigenfunctions of Hz ¢

|Xm, 1> = 71' (1%, 1,10+ 1%, m,20)>  |Ama) = 72' (le,H,1>‘—IxB,H,2>)a
[Xm,2) = 7z (lzg = +1zm e —5)s |t 5> =7 ( |z, 230 — 20,1 3)); (7.2)
|Xm,3) = 7z (98,100 =98, m.20)> | Xme) = Js (Y0, 1,10 + ¥, 11,20
where
%5, m,u) = Fr (e == Pmudd)s %10 = ¢2 (P =3 — |7, m,u8))s } (7.3)
Yo, 11,00 = ?/1—2 ((|m_y,mu— 3>+ [Prud))s 8, 10,0> = 72 I(IPH,u _§>+ |7y, m,08))-

Here the first suffix, o or B, denotes the z-spin associated with the large components while the
further notation x or y shows that the spatial functions associated with the large components
are p, or p, orbitals.

The orbitals [pm) satisfy an atomic Dirac-Fock equatlon differing from (3.7a) only in the
appearance of the additional potential VVE (= Em__% (_]wn Ky ))- ;Fhls Dirac-Fock equa-
tion shows that the matrix elements of the molecular Fock operator Fy; can be expressed as

A A
(XH,1|FM|P7”> = ey{Xm,:|pm) + {xa, il Voot | PmY,s (7.4)
A A
where Vo1 contains the potential Vi, due to the twelve valence electrons and that due to the
two halogen cores: A a ,. p P P P
Voot = Vamr +Vame +Vomor + Venanr + Voar — Ve (7.5)

It is useful to introduce the spatial p orbitals p, , centred on atom p (p = E or halogen 1)
and oriented along the E-Hal, bond, which can be expressed in terms of orbitals p, , and
Do, ue The qualitative features of the bonding are revealed by assuming both that the quantities
{%m,i|Voot|pm) are proportional to the overlap integrals {xy, ;|pm) and that the overlap between
a pair of p orbitals directed along the bond is equal to that of a pair of p orbitals oriented
perpendicular to the bond (i.e. (p)|p.u) = {Py|Py,u))- Since the second assumption shows,
for a bond angle of 90°, that

PelPe,mud = <PolPoww) = 0, 1 =1,2

{Pe|Po,m,2> = {PolPz,m,2) = — {PzlPo,11,1) = —<PolPs11,1) = <PylPy,1m.1)>

it follows that all six Fock matrix elements {(yy, 7L-|ﬁM|pm> (t=1,2,3,m =—1%, %) vanish if
only the large components in (7.4) are retained. This shows that each of the three functions

} (7.6)
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|%m,1)> |Xm,2) and |xg,s) is 2 non-bonding molecular orbital located entlrely on the halogens.
With these assumptions all the off- dlagonal Fock matrix elements {xy, ,IFM|pm) (1 =4,5,86,
m = —}, ) are non-zero except {Yg, 4|FM|p§> These elements are calculated, by using (7.4)
and (7.6), taking (xn,,m,odpm) to be proportional to {xg,;|pm), and retaining only the large

components, to be
<XH,4|FM|p%> =0, (XH,«IFM|P -3 =-5F,
(Am, SIFMlp%> = —F, <XH,5|FM|P -3 = kF, (7.7a)
<XH,6|FMIP%> = —iF, (XH,sIFMIP 1) = —FsiF.

Here the quantity F, defined as
A
F = ex{py,n,1|Py> + <Py, 1,1{Vpot| Py} (7.78)

with the matrix element of the potential I?po, given in accordance with (3.10), is just the reso-
nance integral for a non-relativistic bond orientated along the internuclear axis.

Although the functions entering (7.7) yield a 5 x 5 matrix, the forms deduced in §4 (4ii)
for the orbitals in dihydrides provide a key for calculating the molecular orbitals arising from
these five functions without recourse either to the solution of a quintic equation or to compu-
tation. It is therefore useful to introduce the normalized hybrids |v,7) and |v,7) which appear
in the dihydride molecular orbitals (4.31)

Vi) = 3(y3lp -1 - Ip%>),} 8)
, Iveid = ¥(Ip — 1>+ 43[pd)), '
with large components
Ivli>L = 715 (IPOB>+Ipza>): } (7 9)
[veDdr = 76 (IPoBY = [Poa)) =i ¥4 |py ). '

It follows, either by using (7.8) and the matrix elements (7.7) or by invoking the large com-
ponents (7.9), that introduction of the two linear combinations

|1m,¢) = % (|XH,5>—|XH,4>),}

10
I, 5> = F¢ (12w, ) + | xm,5)) (7.10)

factorizes the 5 x 5 matrix into a 2 x 2 and a 3 x 3 matrix. Both the functions |v,¢) and |y, )
have only one off-diagonal matrix element, namely {xg, ,|Fm|v,?) = /2 F. These two func-
tions thcrefore yield a bonding orbltal |6,¢) and an anti-bonding orbital |¢,i) of energies
(v%]FM|v§)+J2 F) 8y, and ((v%|FM|v%) V2 F) 8y, where Sy and Sy, are normalization
constants. The large components of the orbital |¢,7) presented in table 2 confirm that this is
a fully bonding orbital as suggested by its energy. The three remaining functions |v,7), |xf,5)
and |xg,e) yield a 3 x3 matrix Fy;, whose elements calculated from (7.7), (7.8) and (7.10)
are

d —J3F &iF |
Fl\I3 = —.\/gF d 0 (7.11)
—jzgiF 0 d

with 4 given in accordance with (7.7) by ev+<p,,|1%,°t|p.,,). Substitution of (7.11) into (3.29)
yields one orbital (|57}, table 2) of energy d containing no |v,¢) which is therefore a2 symmetry-
adapted combination of non-bonding orbitals located entirely on the halogens. The two
remaining molecular orbitals |$,7) and |¢s7) obtained from (7.11) without neglecting overlap
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have energies Syo(d+ 4/2F) and Sy (d—4/2F). The large components presented in table 2
confirm the result suggested by its energy that |¢,2) is a fully bonding orbital. The energy is
the same as that of the non-relativistic three-centre bonding orbital 1(p, g,1+ Py, 1, 2) + 72 P1-

TABLE 2. MOLECULAR ORBITALS FOR p? DIHALIDES WITH A Hal-E-Hal BoND ANGLE OF 90°
WITH EQUAL OVERLAPS |{Pg, 1|Po?| AND {pP; u|p1)

energy
relative
relativistic molecular orbitals todt

l¢1i> Sl[?}/_f («/3|P“%>—|P%>)+%(|zn,2%>—|ZB,1%>)—%(|"B,H.1>—|xﬁ.n.2>)] N2 F
[dai) Si{zdz (Ip =)+ 438p3)) — 73z (| za 2 3) — |20 13))

+7% (gm0 — %31 e N1 = 768 ([Ya 2. 1) + Yo 2))} N2 F

[ds?) Follza o 3)— IZH.1%>+|xﬁ,m1>"Ixﬂ.n,2>"i(lyu.a.1>+Iyu.u.z»] 0

[dai) |Xn.1> = ¢2 <|xa.n.1>+|xa.n.2>) 0

[bst) |%n,2) = Vl'z'(lzn.l—%>+|zn,2’_%>) 0

|¢si> an 3) = ;/lz' (’yﬁ.Hd)— lyﬂ.n,z» 0

|¢7i> Sz[?q? («/3[13’_%)"'|P%>)—%(IZH.2%>—|ZH.1%>)+%(I"[}.H.1>—'|xﬁ,n.2>)] —J2F
|bs?) Selzdz (Ip~ 1)+ V3[pd)) +giz [ (|zm,23) = 12w, 13))

+;/lz’ ([xB.H.l.)— le.n.z»]+'}6i('llu.n.1>+ |.’/u.}1.2>)} —\J2F

large components

[d18), N vE {[42 Po—3(Pe. 1.1~ Pam.2)] [B)"‘ [¢2 Pzt 3(Po,m, 2= Po.xr, 1)] |°‘>}

[baidy, W {Te' [;rz‘ Po— #(Px, 8,1~ P, H, I ¢s [42 Pz+3(Po,m 2~ Po.w, 1)1
—z\/%[fz' Pyt %(pv. #.1+ Py,m, 2)] lfl)}

[b30)y, {[Po B2~ Pom1~(Pyr 17 Py, 2)][a)+ [Ps, 8,1~ Pa,m,2] [B)}

[bsi)s, Qfl (Pa, a,1+Pw,H,2)[°‘>

[bsi)r, 12( 1,1+ Pz m,2) |B)

[bei ), 75 (Pu,n,1—Pu,m, 2) |B)

[d7i)r, Sz {[¢2 Po+3(Pe, 1~ Po, m, 211>+ [;72 Pz~ %(Po,m, 2~ Po,x,1)] Ja)

[ba?)y, S, {;/—e‘ [;/—2‘ Po+ 3(Po,n,1— Pa,,2)] | B)— Ja [42 Pz—3(Po,8,2— Po,m,1)] |a)

—Z«/% [,/2 Py— ?(pu,n.l'l'pw,n, 2)] IQ)}
1 In the limit of small overlap F is defined by (7.75)}.

(¢) The molecular geometry

The calculatlon presented above shows that out of the eight molecular orbitals having
eigenvalue 7 of Hz & two ([,7) and [¢,7)) are fully bonding, two (|d,7) and |si)) are fully
anti-bonding while the remaining four (|xg 1), |Xm,2) |Xm,3) and |$;7)) are non-bonding
orbitals located entirely on the halogens.

A more complicated calculation presented in Appendix 8 shows that for every Hal-E-Hal
bond angle there are still four non-bonding orbitals located entirely on the halogens, of I'AIz,t
eigenvalue 7, even if the resonance integrals F, and F|, defined as

Fy = elpy,ulpi)+ <P||,Hl I;r’mtlpu% } (7.12)

AI
Fy = e{Py,u,1|Py) + <Py, 1, 1| Viot| Py s
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for pairs of orbitals aligned parallel and perpendicular to the E-Hal bonds are not the same.
This calculation also shows that for any bond angle there are still two bonding and two anti-
bonding orbitals having H, ; eigenvalue  and that the bonding characteristics are independent
of the bond angle if the two resonance integrals F], and F, are taken to be equal. Since the
elght molecular orbitals baving eigenvalue —7 of H, ¢ can be generated from the eight having
H ,t-cigenvalue ¢ by means of (2.18), it follows that there are four bonding orbitals and eight
halogen non-bonding orbitals for all bond angles. Since eight of the twelve valence electrons
are accommodated in the halogen non-bonding orbitals leaving four to occupy the fully bonding
molecular orbitals, it follows that the order of each p-Hal bond is unity for all bond angles
if the distinction between ¢ and = bonding is not considered. Although it is not possible to
predict the equilibrium geometry, the results strongly suggest that the potential energy curve
for the bending of the molecule will be shallow. The detailed form of the potential will be
determined not by the primary bonding properties of the valence orbitals but by other ener-
getically smaller factors such as the difference between the strengths of o and = bonds, the
behaviour of the outer core orbitals on the central atom, non-bonded repulsions between the
end atoms or dispersion forces. Examination of these factors is outside the scope of this paper.
It should be pointed out that Walsh diagrams only predict AB, molecules containing 1316
valence electrons to be bent if the s orbital on the central atom is considered.

The prediction that the equilibrium bond angle is not determined by the primary bonding
properties of the valence orbitals, with the consequence that the bending potential is predicted
to be shallow, is interesting because this situation does not seem to arise in the experimentally
known part of the periodic table. However, the results of this section do show that relativity
is not predicted to destabilize purely covalently bound E(Hal), systems in which the heavy
element E has two valence electrons occupying p Dirac-Fock atomic orbitals.

8. BONDING BETWEEN SUPERHEAVY ELEMENTS
(a) The Kappa valence method

The bond between the j—j coupled ground states of two heavy elements (A and B) each ’
having a single p or p valence electron is described in the Kappa valence method by the
Kappa valence wavefunction '

[Vievs) = Sy [|cores)|cores J5 ([vaddIve — 1) Falva — DIva )], , (8.1)

having 9 = 1. Here |core,) and |coreg) are Hartree products of the type (6.8) constituting
the cores of the elements A and B respectively and S, is the normalization constant. The
negative sign is taken in (8.1) if |v, ) and |vg) are both P or both p orbitals, the positive sign
is taken otherwise, thus ensurmg by virtue of the relations (2. 29) and (2.30) that |V,y,>
is symmetric under Hm r and Hy ¢ if # = 1 and that it is antisymmetric under these two
operators if 9 = —1. Furthermore, the relation (2.31) shows that if the atoms A and B
are identical, the function (8.1) is symmetric under ﬁ,,T if # = 1 and antisymmetric under
H, r if 7 = —1. Analogously to the wavefunction (3.1), the ground state of the molecule is
described by the function [(8.1) havmg 7 = 1, while the case 7 = —1 describes an excited
state.
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Application of the first two stages of the four-step process (§3 (a)) of investigating the bonding
properties of a Kappa valence wavefunction shows that the interaction energy predicted by
(8.1) is given by

Eiy, g = S2(<VA z MvB +VDFB|VA %) + <VB %IVNA +VDFAIVB %

£7{va v <vs — %|VNA + VDFA + VNB +VDFB‘VA

+<{va3ve — §|mt|vadve —3) — (vadve — §lt|ve - %VA%>
Fovadve — 4t |va — v i) £ pvadve — §ritlvedva — 1) + R, (8.20)
= (1+¢vadlved)?) (8.26)
A A .

Here Vg, is the Dirac-Fock potential due to the core of atom p while Vg, is the corresponding
nuclear potential. The result (8.24), which has the form (3.8) expected for the interaction
energy predicted by a Kappa valence wavefunction, is simplified (stage 3) by expressing the
large components of the valence orbitals in terms of purely spatial functions through (3.9)
and neglecting the valence orbital small components. Thus introducing the potential ¥,

(1 = A, B) defined by (3.10¢), due to the nucleus plus the core of atom p, (8.24) becomes,
after using the relations (3.5) and (3.9),

Eint,y = 3[[”A<P0,A|I;B|Po,}> +(1—ay) <p1,A‘I;Blp1,A> + a};<P0,B|I;A|p0, B)

+ (1 —ag) <Py, B|Valps, ) + R +9{ £ (asap) {p,, Alpo B)

+[(1-ay) (1 —ap)]¥<p, A|P1 B>} { £ (axap)¥<p,, AlVA"*’V;?o +R7|po, B>

+[(1-a,) (1 —ap)]¥<p,, AIVA+VB+R Py, B)}

+a, ap{Po, 4 Po, B|r2' (1 +77P12 I}PO,APO,B}

+a,(1—ag)<Po, s Py, 8" (1 - 1?\12) |Po, aP1,B)

+ (1 —ay) ap{py, aPo, 8/712' (1 = P12) [Py, 4 Po,B)

+(1—ay) (1 —ap) ({p1,aP-1, 8722 |[P1, aP—1,B) + 7{P1, A P-1, 8|72 |P1, BP-1,4))

+ 2[ay ag(1~ay) (1—ap) ]} [1<Po, a P1, 8/732 | Po, 5 P1, 4 — {Po, a Po, 5712 |P-1, BP1, 4)

—1<Po, AP1, 8|12 |P1, s Po,5) = 7{Po, A Po, B|712'[P-1,4 P2, 8)]]; (8.3)
where a, and ap are the analogues for atoms A and B of the quantity a defined after (3.10).
By expressing the complex p orbitals in terms of p, and p,, it follows that {p,, s Po, 8|712"| P-1, 4 P1, B>
= —{Po, aP1,B|715"|P1,  Po, 8) Which shows that the last two terms in (8.3) sum to zero. This
result is useful because the remainder of (8.3) can be illuminatingly expressed in terms of the
quantities Xint, (6.43), and the interaction energies predicted by non-orthogonal Heitler—

London singlet and triplet, and orthogonal triplet wavefunctions. The results for the functions
(8.1) having 9 = 1 and —1 respectively are found after (6.41) to be

Eing, 1 = SHanag® NHini(Po, 45 Po,5> Vas Vo) + (1 —aa) (1 —ag) " NHiy(py, 4, P15 Vas V)

+[asap(1—a,) (1—ap)]} [Xint(Po, > Po, B> P1, 4> P1,B> Vas Vi)

= 2{Po, aPo, B|712'|P—1, BP1, a)] +as(1 —ag) *°Hy (o, o, Pr,®> Vas Vas)

+(1—ay)ap® Hing(py, a5 Po. 5> Vas Va))s (8.4a)

Eint, -1 = $Z1{aaap®NHing(Po, a5 Po, 5> Vi V) + (1 —ay) (1 —ag) > NHiny(P1, a5 P1,3s Va» Vi)

F [aaan(1—as) (1—ap)]* [Xins(Po, a» Po, B> P1, 45 P18 Va, V)

= 2¢Po, aPo, B| 712" [P-1,BP1, 40] +aa(1 —ag) 5 %Hint(Po, s P, B> Va» Vi)

+ (1 —ay) ag® "Hini(py, 4> Po. 5> Va» Va)}- (8.45)
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The quantity {p,, s Po, 8|712"|P-1,BP1,4) Will be positive but will be much smaller than the
Xini-term and does not therefore affect the qualitative features of the bonding. The result
(8.44) shows, in the small overlap limit for which §, = 1, that both p—p and the description
(8.1) of p—p bonds consist of § of a non-orthogonal Heitler-London singlet bond and of § of
an orthogonal triplet one, but that both p—p and p-p bonds are destabilized by % of an Xiu:
term. These results predict the bond orders of both these bonds to be 1 if a single term Xin¢
is taken to contribute —2 to the bond order while the order of an orthogonal triplet bond is
taken to be } as discussed previously. Although p—p bonds are predicted to be weak because
they contain a substantial destabilizing component, the result (8.44) shows that p—p bonds are
stabilized by the Xjni-term. The contribution (§) of this stabilizing term to the order of a p-p
bond taken in conjunction with the 4 non-orthogonal Heitler-London singlet and  orthogonal
triplet character of such a bond exhibited by (8.4a) shows that the total order of a p—p bond
is 45. This result clearly shows that the bond between an element contains a single p valence
electron, and one containing a single p valence electron is not destabilized by relativity.

The prediction that p—p bonds are weak, having an order of 1, applies only to the wave-
function (8.1) but does not apply to the bond that would actually be formed between two
elements each having a single p valence electron. This distinction arises for p—p bonds but not
P—Pp or p—p ones because for two elements each containing one valence p electron there exists
a mode of bonding different from that described by the wavefunction (8.1). The Kappa
valence wavefunction

[Wewn) = SeZ[|cores)|cores) 5 (pady|ps —2) —pa —$) [Pa )], (8.5)

is readily shown, by using the large components (3.9), to describe the formation of a pure =
bond whose order is unity. Hence p—p bonds are not predicted to be 51gn1ﬁcantly destabilized
by relativity.

The Kappa valence method predicts the orders of both p-p bonds and of the bond (6.35)
between either a p or a p orbital and a halogen in its optimal valence state to be greater than
unity. The results of the Kappa valence description of the bond between two heavy elements
and the meaning of a prediction of an order greater than unity for a bond formed from just
two electrons are illuminated by introducing the four non-relativistic wavefunctions

I'Ze) = S sz’[lCOIFe )|coreE*)|po, s Po,8) 72 [aB—Ba)],
|2 = S,[|coreXRY|corel®) s (Ipy, aP-1,5)|Ba) ~ [P_s, aP1,5)aBN)];
Py = o [IcoreARNCOfeBRH‘ (IPo,aP-1, 83|20} = |Po, s P1, 8> [BBI)],.

P11’y = <[|coreX™)|corel®) J5 (|ps, s Po, 5YIBBY — |[P_s, 2 Po, nYl0E))].

If the differences between the radial parts of |v,);, and those of |v,) are neglected, the large
components of |{,,) can be written

Wevidn = —{eaen|'Zo) + [(1 = an) (1 —ap)}[E,) + 65 (1 —ap)BI) + (1 —a,) beg|*TI")}  (8.7)
where ¢, is —75 if atom p has a p valence orbital while ¢, is 4/} if this atom has a p valence
orbital. The two functions |1Z;) and |Z,), the latter being the E-function built from = valence
orbitals, are the source of the Heitler-London singlet contributions (the first two terms in
(8.44)) to the bonding described by |V, ), while |3IT) and [3IT’) are responsible for the ortho-
gonal-triplet contribution (the last two terms in (8.44)). The Xine-term is seen to arise as the
interatomic contribution to the matrix element between [3IT) and |3I1'), while {p,, 4 Po, 8|7i2"
|[P-1, APy, B) arises similarly from |1Z,) and |Z,). The terms inside the two pairs of square

(8.6)
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brackets in (8.44) are thus seen to constitute a resonance contribution, the prediction of bond
orders greater than unity being thus explained. Since bond orders greater than unity are
predicted by non-relativistic multi-structure valence bond theory, it is doubtful whether such
predictions indicate any strength beyond that of a normal covalent single bond.

(b) The relativistic molecular orbital description

The bond formed between the j—j coupled ground state of two superheavy elements each of
which has a single valence p or p electron is perhaps described more simply and transparently
by relativistic molecular orbital thEory which yields the same predictions as the Kappa valence
method. The results (2.18) andAHg,t =-1 show that a relativistic molecular orbital wave-
function symmetric under both H, y and H, 1 and which describes purely covalent p—p, p-p
or p—p bonding is N
| Vo, mp = H[|corey Y| coreg)|dom)|d —m)]. (8.8)
Here |¢m) and |¢ —m) are the two bonding orbitals, with the label m on |y, ,,» denoting the
positive m; quantum number of the first of these two orbitals. For both p-p and p-p bonds m
takes the value §, while there are two orthogonal multi-electron wavefunctions |y, 3> and
| Wato, 3 if both atoms A and B have a single valence p Dirac-Fock atomic orbital. The qualita-
tive features of the bonding are revealed as discussed in §3(ci) by expanding |¢m) in just the
two valence Dirac-Fock atomic orbitals of the same m; quantum number. Thus

|¢m> = 1712_S7n (‘VA,m>i |VBm>)a (8'9)

where the upper (positive) sign is taken for m = § for the p—p and p-p cases, while the lower
(negative) sign is taken if both |v, 1) and |vg$) are p orbitals. In (8.9) S, is a normalization
constant which becomes unity in the limit of negligible overlap.

The expressions (3.9) show that for the description of p—p and p-p bonds provided by
setting m = } in the wavefunction (8.8), the large components of the bonding molecular
orbital (8.9) are

|03, = Sula 75 | F (Po,a—Po,p)a)+ (1 —a)t 5 |(P1, 2 +P1B) B (8.10)

This result shows that p—p bonds (¢ = %) have }o anti-bonding and %n bonding character
and hence in agreement with the Kappa valence method that the bond order is predicted to
be 4. This shows that the bonding between two heavy elements each having a single valence
p electron for which the p — p excitation energy is large are very substantially destabilized by
relativity.

For the description of p—p bonding provided by the wavefunction (8.8) with m = 1, the
large components (8.10) of the bonding molecular orbital show that this orbital is 26 bonding
and in anti-bonding and hence that this description predicts a bond order of 1. However,
the actual bonding between two elements each containing a single electron occupying a Dirac—
Fock p orbital is not destabilized by anti-bonding components because for these systems there
exists an alternative mode of bonding. The large components of the bonding molecular orbital
|$3) are given by

|03>1 = 75 Sal (P1, 4+ Pr ) @), (8.11)
which shows in agreement with the Kappa valence method that p—p bonds are purely = in
character, having unit bond order. Hence relativity is not predicted substantially to destabilize
p—p bonds. For (E115), the only reason for supposing that the bond might be weaker than a
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normal covalent ¢ bond is that the overlap between the outer-core 7p2 closed subshells of the
two atoms might introduce a non-negligible repulsive term into the interaction energy for the
fairly small internuclear separations necessary for significant overlap of the p.(|p3)) valence
orbitals.

For p-p bonds the large components of the bonding molecular orbital are

|03>n = Sule |(—F5 Po,a+ /% Po,B) @)+ 72 [ (V& Pra+75 Pr,B) B, (8.12)

where |v,) is a P orbital and |vg) is a p one. Although there may be a slight ambiguity in the
prediction of the order of p—p bonds by examining (8.12), it seems clear that this order is
close to unity. With the simplest and probably dubious assumption that the orbital p, ,,
(= 75(Pm,u+ 2 Pm,w), B = Aor B) is fully bonding, the bond order is predicted to be unity
because (8.12) would then be interpreted as an equal mixture of a fully bonding ¢ and a fully
bonding © molecular orbital. The assumption that the orbital p,,,, has unit order is probably
incorrect because in the limit¢, = 1and ¢y = 0 for the more general orbital (¢, o, A +¢8Po,B)
of which pg , is a particular case, the large components (8.12) would become, for purely
covalent bonding, 75| — po, s @ + p;, 5 B) which certainly does not correspond to a bond of unit
order. However if py, , is expressed as a linear combination of the orbitals ¢ and o* defined
through .

c = So?'f(—Po,A'*‘Po,B)s} (8.13)

o* = 8¢ 7 (Po,a +Po,8)>

which are regarded as fully bonding and fully anti-bonding respectively, so that with the

neglect of overlap
Po.o = 75 [(1+42)0+ (y2-1)0*], (8.14)

the bond order is predicted to be 3[(1+4/2)2—(4/2—1)2] = 2§ if the n component of (8.12)
is analogously decomposed into J; (p;, s + P1,8) and 75 (py, 4 — P, B)- Since the bonding (8.12)
is purely covalent and the entire electron density contributes to the bonding, unlike for the
p-H and p-H bonds examined in §3(cii), it is reasonable to determine the bond order from
(8.12) by comparing the coefficient multiplying the overlap density in p,, o, shown in §3(ci)
to be primarily responsible for the bonding, with the coefficient (}) multiplying the overlap
density in the fully bonding orbital ¢ (8.13). After applying the same argument to the =
component of (8.12), this approach predicts the same bond order 22 as that calculated by
expanding |$3})L according to (8.14). Although the molecular orbital and Kappa valence
methods do not predict the identical bond order, both predictions are sufficiently close to
unity that it can be concluded that p—p bonds are not substantially destabilized by relativity.

The nature of the bonding between two heavy elements deduced in this section can be used
to discuss the cohesion of the elements (E113 and E115) containing a single valence electron
occupying a p or p Dirac-Fock atomic orbital. Since the p - p excitation energies (see paper I)
are large compared with the cohesive energies of the elements, it can be predicted that the
electronic structures of the solids will be determined by the bonding characteristics of the j—j
coupled ground states of the atoms. If the energy bands in the solid are regarded as formed
from the overlap of the valence atomic orbitals, it follows that E113 may be even more volatile
than predicted by simple extrapolation of the boiling points and heats of vapourization down
group IIIB of the Periodic Table because the results of the previous paragraphs show that
overlap of two p orbitals yields a weak bond. Such high volatility is not predicted for E115’
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because overlap of |p3) atomic orbitals yields a fully bonding = orbital. This suggests that it
might be predicted that the structure of E115 would consist of chains of atoms bound by the
partial filling of energy bands constructed from the overlap of both |p3) and |p — %) atomic
orbitals. The interaction between the chains would be much weaker because consideration of
two such parallel chains shows that the interaction between them contains equal numbers of
bonding and anti-bonding (in-phase and out-of-phase overlaps of the large components of
the atomic orbitals) interactions. The predicted weakness of the cohesion of elemental E113
coupled with the approximately fully bonding character of the bond (8.12) formed by the
overlap of a p with a p Dirac-Fock atomic orbital further suggests that E113 and E115 would
form a stable 1:1 alloy.

9. CONCLUSION

It has been shown by using both the Kappa valence and the relativistic molecular orbital
approaches that the ground relativistic configuration of an element containing a single valence
p or p electron can form a stable covalent bond without invoking a valence state in which
electrons are partially promoted from p into p orbitals. Although the two approaches predict
different fractions of the bond to be of the normal singlet covalent type, they do agree in
predicting that the overall orders of purely covalent p—H and p—H bonds are § and § respectively
in the limit of small overlap. Hence such bonds are predicted to be weakened only moderately
compared with normal covalent ¢ bonds.

The Kappa valence method predicts that p~H and p-H bonds are partly composed of a
normal covalent o bond and partly of the triplet bond formed by the interaction of two electrons
occupying orthogonal orbitals. This method further predicts that the bond formed between a
heavy element and a group of rather different electronegativity may be weakened by relativity
more than a purely covalent p—H or a p-H bond because only the non-orthogonal Heitler—
London singlet portion of such a bond can be stabilized by ionic—covalent resonance.

Both the Kappa valence .and relativistic molecular orbital methods predict that the ground
relativistic configuration of an atom having two electrons occupying p Dirac-Fock atomic
orbitals can bind tw« hydrogen atoms and that the resulting molecule will be bent. With further
Huckel-like assu.mptions relativistic molecular orbital theory predicts the equilibrium bond
angle to be 90°. The Kappa valence method also predicts that the bond angle will be 90°
and that such bonds will be slightly weaker than the p—H bond formed by an atom having
only one valence p electron. Finally it has been shown that a 2 subshell behaves like a closed
shell in that it cannot form stable covalent bonds.

Although the bonding between the ground relativistic configuration of a heavy element and
hydrogen atoms was considered in detail, it is clear that the conclusions will apply to the bond
between such a configuration and any atom or group containing no valence n electrons and a
single unpaired electron occupying a ¢ orbital.

It was shown by using the Kappa valence method that the nature of the purely covalent
bonding between the j—j coupled ground state of a heavy element having a single valence
electron occupying a p or p Dirac-Fock atomic orbital and a group described non-relativistic-
ally as containing both a filled shell of valence = orbitals and a single unpaired electron occupy-
ing a o orbital depended strongly on the m — ¢ excitation energy. If this excitation energy is
large it was shown that the 7 symmetry portion of the large components of the p or p valence
orbital of the heavy element introduced a substantial destabilizing anti-bonding component
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into the interaction. If the heavy element had a single valence p electron this destabilizing
contribution is sufficiently large to inhibit the formation of a normal covalent bond although
for a heavy element having a single valence p electron the bond is merely predicted to be
greatly weakened, having an order of . However, if the ¢ and = orbitals of the free bonded
group are degenerate as for a halogen it was shown by both the Kappa valence and relativistic
molecular orbital methods that the group would adopt a valence state that eliminated the
anti-bonding terms from the interaction to yield a bond of unit order having both a c and a
symmetry contribution. Finally it was shown for the case where the o and n orbitals of the
free group are degenerate that if the group and the heavy element have different electro-
negativities the ionic—covalent resonance stabilization will not differ qualitatively from that
of the bond in the corresponding non-relativistic system.

Relativistic molecular orbital theory was used to show that the ground manifold of a heavy
element containing two valence electrons occupying Dirac-Fock p orbitals could bind co-
valently two groups each described in non-relativistic theory as having four electrons occupying
= orbitals and one electron occupying a o orbital. It was assumed in this investigation that the
o and ~ orbitals in the free groups were degenerate. It was predicted, for all bond angles, both
that four electrons occupied bonding molecular orbitals and that the orders of the bonds were
unity, and hence that the potential energy curve for angle bending would be shallow. The
presence of w orbitals degenerate with the o orbital on the bound group changes the nature
of the bonding from that arising when the bound group has only a single ¢ electron in that
neither are the bonds predicted to be significantly weakened nor is an equlhbrxum bond angle
of 90° strongly favoured.

The bonding between the j—j coupled ground states of two heavy elements each having a
single electron occupying a Dirac-Fock p or p orbital was investigated by using both the
Kappa valence and the relativistic molecular orbital methods. Both methods agree in predicting
that p—p bonds will be weak, having an order of 4, because they contain a substantial anti--
bonding component. Both approaches also agree in predicting that p-p bonds will be entirely
7 in character, having unit order. Both methods further agree in predicting that p—p bonds
contain equal ¢ and = contributions and that the bond order is approximately unity. It has
therefore been shown that there are no good reasons for believing that either p—p or p—p bonds
are significantly destabilized by relativity.

This paper has been concerned solely with the purely covalent bonds that can be formed by
the ground manifold of a superheavy element if all the orbitals except the most loosely bound
one are assumed to be sufficiently contracted that they can be regarded as belonging to the
core. The chemistry of superheavy elements can only be predicted by considering all the possible
modes of bonding that might be exhibited by such elements. It appears that any such mode
can be described as some mixture of three extreme bonding types, namely ionic, relativistic
valence bond and Kappa valence. Any quantum chemical calculations on molecules containing
superheavy elements that may in future be made might show either that the covalent bonding
has a character intermediate between that described by the relativistic valence bond method
(full hydridization of the p and p orbitals being assumed to produce orbitals whose large com-
ponénts have pure o or pure n character) and the Kappa valence method or that the outermost
core orbitals play a non-negligible role. However, it should be stressed that the remarks of
Coulson (1960) on the limited utility of accurate numbers whether they be obtained from
experiment or computation show that the results of any such calculations on compounds con-
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taining superheavy elements will need to be interpreted and understood in physical terms. A
system covalent bound to pure unhydridized Dirac—Fock atomic orbitals is one of the limiting
models needed for comparison with the results of computer calculations. This paper has
provided the understanding of this limit which is a necessary prerequisite for its use in under-
standing the results of such computations. Paper III of this series (in preparation) examines
possible compounds formed by superheavy elements by comparing the heats of formation
predicted by the ionic model with those predicted by both the relativistic valence bond and the
Kappa valence methods, the latter predictions being made from the characteristics of the bond-

ing elucidated here. By this means th€ chemistry of the 7p series of superheavy elements is
- predicted.
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APPENDIX 1. THE PHASES OF THE OPERATORS H, ,

The phases of the operators (2.13) are determined by demanding that they satisfy the group
multiplication table and therefore obey

H u = :BRq,u(in) ) (A 1-1)

by analogy with the relation n n
Hg,s = iqu.s( t ) (A 1.2)

satisfied by the operators, correspondmg, through relations of the type (2.10), to purely spatial
symmetry operations. Here Rq s(7) is the operator pertaining to a rotation of the coordinate
system through an angle —=n about the g-axis (Brink & Satchler 1962). The operator I, is
chosen by convention to be £ rather than — 8 or +i8, even though the commutator [ﬁ‘, i,]
still vanishes for all three of these alternative definitions, because the choice I, = £ causes
the large components to transform under the Dirac parity operator I, in exactly the same
way as non-relativistic wavefunctions do under . Since it is a standard result that the operator
corresponding to a rotation for both space and spin of the coordinates through an angle ¢ about
the axis ¢ is exp (—if ¢) exp (—3iZ2,¢) (Brink & Satchler 1962), equation (A 1.1) taken in
conjunction with I, = £ shows that H, , must be defined as +iZ, /S' The signs of the operators
H,,, are not uniquely defined because (A 1.2) is satisfied with both Rq s(m) and Rq s(—x).The
positive sign (+7) will be chosen in (A 1.2) and hence in (A 1.1), the definitions (2.13) thus
being fixed.

A

A
ArrENDIX 2. THE ACTION OF THE OPERATORS H,; anp H, ;
ON THE KETS |¢amz'p h,)

The kets | ¢ miph,), (2.17), are not eigenkets of Hx ¢ or Hy ¢ because neither of these two
operators commutes with j, or Hz t However, left multiplication of (2.8) by H ¢ or H,, ¢
shows that Hz t|@omiph,) and H,, t|¢amzp h,) are eigenkets of F degenerate with |¢amzph A

The action of the operators H ¢ and H .t when expressed in terms of spherical polar co-
grdinates (r, 6, @) is to change ¢ to n—¢ and — ¢ respectively. It therefore follows by writing

1, as —i9/0¢ that R .
| A6, , = -1, (A 2.1)

whence, since both X, and X, anti-commute with X, it follows both that

Hq_ %izﬁq t = _jz9 }
A A ’ =x A22
and that » H;,}Hz,tﬁq,t = -—I'-\I,, t 7=55 ( )

where the commutation of all the Hs is used in the second result. Left-multiplying the eigen-
value equations (2.174) and (2.17 b) for m and 4, by H ¢ or H .+ and then invoking (A 2.2)

show that
Jz(Hq tl¢amzph >) = —m(Hq,tM)amzp z>) } (A 2.30)

z t(Hq,tld)amzph >) =- z(Hq,tM’a’mph >) =hy (A 2. 35)

The results (A 2.3) show that Hx t|damiph,) and H,, t|¢amiyh,), which have already béen
shown to be eigenkets of F degenerate with |$,miyh,), are eigenkets of j, and H ¢ of eigen-
values —m and — k, respectively. These two kets have the same eigenvalues iy of I, as |d,miyh,)
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because 1, commutes with both j, and Hz ¢ The relation Hq ,H ¢ = 1 shows that the two
kets Hq t|¢amiyh,) both have unit norm whence it follows from (A 2.3) that they can differ
from |¢, —mi, —k,) by at most a phase factor €', this establishing the result (2.18).

APPENDIX 3. THE MAGNITUDE OF THE MATRIX ELEMENTS OF THE
IONIC COVALENT RESONANCE SECULAR PROBLEM

It is the purpose of this Appendix to present evidence that the difference (Hgf — Ejy,) is
greater in magnitude than the off-diagonal element H¥ thus justifying the expansion of (3.25)
according to (3.26).

The nearest-neighbour interionic separation in a crystal composed of E+ and H- ions is
greater than that of the isolated ion pair E*H-. Consequently the repulsion arising from the
overlapping of the closed electronic shells of E+ and H~ will be'much less than the coulombic
attraction at the inter-ionic separation equal to the sum (rg+ +75-) of the ionic radii of E+
and H-. If this overlap is neglected the binding energy Ein(Vion) (3.18) will be accurately
given by pure electrostatics as

Eni(Vion) = — (rg +2.797) -1 + Py — 0.747 (A 3.1)

where Py is the ionization potential of the element E, and 0.747 and 2.797 are the electron
affinity of a hydrogen atom and the radius of an H- ion. For E113 and E115 respectively the
ionic radii are predicted to be 2.81 a.u. and 3.21 a.u. (paper III), while the most reliable
estimates (paper III) of the first ionization potentials based on Dirac-Fock calculations
(Paper I) are 7.9 ¢V and 5.5 eV. Substitution of these results in (A 3:1) predicts that Ejpy(Vion)
is +2.3 eV and +0.2 eV in the two cases respectively. These results are scarcely changed if
the Dirac-Fock predictions for Pg and the electroh affinity of the hydrogen atom are used in
(A 3.1) rather than values that take account of electron correlation because the decrease by
0.8 eV of Py is almost exactly counterbalanced by a corresponding decrease of the electron
affinity. These results suggest that the expansion of (3.25) according to (3.26) is valid because
the covalent binding energy will almost certainly be greater in magnitude than —1.0eV
estimated for H{y in the next paragraph. It should be pointed out both that Hg will be greater
than these values of Ejp(Von) because the ionic function E*H- is not orthogonal to the co-
valent function and that inclusion of the overlap repulsion neglected in (A 3.1) improves the
accuracy of expansion (3.26).

The two quantities | Hy — Eint| and H may also be compared for LiH by using the integrals
reported by Hurley (1958). If only the 1s and 2s Slater functions of the lithium are considered,
the interaction energies Ey4(1Z), (3.12a), and Ej,(YRE) are predicted to be —1.9 eV and
—0.67 €V respectively, the latter quantity being calculated from the ionization potential and
electron affinity predicted by the Hurley wavefunction. The value —2.2 eV calculated for

ESf(i-1Z), (3.234), compared with the overlap A;, of 0.608, shows that E(yiF) and
HYf are —0.19 ¢V and —1.0 eV respectively. This confirms at least for this system, which is
not atypical, that (3.25) can be expanded according to (3.26).

44-2
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APPENDIX 4. A COMMENT ON THE ORDERS OF p-H anD p-H BoONDS
PREDICTED BY MOLECULAR ORBITAL THEORY

The methods used in §3(cii) to deduce the orders of the p—H and p-H bonds require that
the bonding characteristics of the orbitals (3.39) are known. It should be pointed out that the
argument that the p~H and p—H bond orders are 1 — 1S, and 1 —4S%, because the fractions
4S%o and 8%, of the density do not contribute to the bonding implicity makes assumptions
about the bonding characteristics of the functions (3.39). In this Appendix it is shown that
the only reasonable alternative approach that is readily apparent yields predictions that are
not qualitatively dissimilar to those presented in §3(c).

In the alternative approach the large components (3.37a) of the bonding relativistic molecular
orbitals are expressed in terms of the p, function on the heavy element and the two spatial
orbitals

6 = S5 7z (Po+50)s (A 4.1q)
6* = Soe 75 (Po—50)» (A 4.10)

so that neglecting overlap (i.e. Syyp = S5 = Sor = 1)
[08)x, = H(1+ya) [ou) + b(Ja—1) | %0 & (1 -}t pyB) (A 12)

If the arguments used in §3(cii) are not accepted, then the only reasonable assumption that
can be made is that (A 4.14) is a fully bonding orbital while (A 4.15) is a fully anti-bonding
one. This approach then predicts from (A 4.2) that the bond order is ya(= }[(1+ a)%—
(Ja—1)?]) because the p, orbital is non-bonding. Clearly the bond order is still predicted to
be J/a if this is taken to be § and § in the p and p cases respectively of the order predicted by
expanding the functions (3.39) in the orbitals (A 4.1). Furthermore the bond order is also
predicted to be /a if this is calculated by comparing the coefficient multiplying the overlap
charge density py(r)sy(r) in (3.37a) with the same coefficient in the orbital (A 4.1). It was
pointed out in §3(cii) that the validity of this approach can be questioned.

The approach used in this Appendix predicts the orders of p~H and p-H bonds to be F
(= 0.577) and J§ (= 0.81) respectively. The p-H prediction does not differ significantly
from that (§ = 0.833) presented in §3 while the p—H prediction is not qualitatively dissimilar
from that (§ = 0.667) derived in §3. It should be pointed out that the approach used in this
Appendix rests on the somewhat arbitrary assumption that (3.374) should be expanded in
the orbitals (A 4.1), while the arguments used in §3 (cii) are independent of any such assump-
tion. Consequently the predictions made in §3 should be regarded as more trustworthy than
those presented in this Appendix.

APPENDIX 5. DETERMINATION OF THE KAPPA VALENCE WAVEFUNCTION
FOR AN H-p-H svsTEM

In §4(a) it has been argued that both the coefficients ¢; determining the Kappa valence
wavefunction (4.12) for an H-p-H system and the equilibrium bond angle can be determined
by maximizing the bond overlap F (4.16) subject to the condition (4.15). This condition taken
in conjunction with (4.13) shows that

es = 2 Stafsy — )/ (Ctals 32 +<tls, — %)2)*,}

¢g = F {81 3)/(Ctafs1 32+ <ty s, — 1)), (4.8.1)
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whence
F = (Ktyls: 32+ <tfs, — 5 (A5.2)
From the relations

als13) = —{alst ‘“%>z} (A 5.3)
Qlsi —3) = Hals1$)s

which are proved by using identities such as
(xelsi —3) = Xl Hy VH,, ofsy — )
and envoking (2.30) and (4.1), it follows that

F = (<X1151%>2+<X2I51%>2)%~ (A5.4)

This result shows that, after imposition of the condition (4.15), the bond overlap F is inde-
pendent of the coefficients ¢;—¢, although clearly it still depends strongly on the molecular
geometry. It thus follows that these coefficients are not uniquely defined by just the two con-
ditions (4.15) and (4.16). This non-uniqueness arises because the wavefunction (4.12) can be
written

Vo) = S{|core) xFel(eaa—caca) (1) 5120 = [%ad 151 ~ )
+(61€4+€2€3)(IX1>|51—%>+lx2>|sl%>)] Xlll_2[(0103—5204)(|X3>|52%>—|x4>|52—% )

— (ereq+c363) (|Xs) |82 — 3D + [Xad 32 30) ]} (A 5.5)
However, it follows from (A 5.1) and (A 5.2) that
€y = f(("I(X.llsl — 3> +calXals1 — %»/F,} (A 5.6)
¢ = F (er{xals13) +ea{als1 — 1)) /F,

and hence that
C1C3—CaCy = * <X2|51%>/F=} (A 5.7)
0104+ 0305 = F {Yals13)/F.

This shows through (A 5.5) that the wavefunction is independent of the choice of any one of
the coeflicients ¢;~¢, provided condition (4.15) is satisfied. This degree of freedom is most
conveniently exploited by imposing the further orthogonality condition

<t1|(€352%_5452—%)> = 0, (A 5.8)

which ensures that the hybrid |t,) does not overlap with one of the hydrogen orbitals in the
other bond. This condition, taken in conjunction with the normalization condition (4.13),
yields a second expression for both ¢; and ¢,.

¢y = (talsy — 3/ (Ktalse 1)2+ Ctylsy — 3)2)
= {tals; =3/ (tals2 12+ (ralsa DY,
co = talsad )/ (tls23)2+ Ctyfse — 1))
= {tyfsp 3D/ (als2 d D2+ (xals2 309
The second step in these two expressions follows in the same way as (A 5.6) is obtained from
(A 5.1), namely by using the relations
Halse —3) = (Kels23), }
(alsed) = = (talse — 3,

(A 5.9)

(A 5.10)
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which are derived in the same way as (A 5.3). An equation determining ¢, is obtained by
equating the two expressions (A 5.1) and (A 5.9) for ¢,.

ey {xalsy = 3> +calalsy =3 _ exalse — 3> +colialse —
(Crals1 32+ (ralsi 1)) ({xalse 3D+ (xels 3 )%

=1 {Xals1 — 3D +ealialss = 1)
= . As.11
(Culsr B9+ s D7 -
The second of these relations is derived from the first by using results such as (y;|s, —3}) =
(xl|Hz tHz,t|s2 = —{Xa|s; — %) where (4.1) and (2. 31) are envoked. These relations show

that all the coeﬂ'lc1ents ¢;—¢4 are uniquely determined by the molecular geometry because
this defines the overlap integrals entering (A 5.11) which uniquely fixes ¢; and ¢, and hence,
through (A 5.6), ¢; and ¢,.

The bond.angle is determined by maximizing the bond overlap F. The contributions of the
small components to this overlap will be smaller than those of the large components by a
factor of ¢? and can therefore be neglected as discussed in §3 (a). The relations (3.9) show that
the large components of the hybrids (4.11) are

I%dr = |(Fsp: +3pa) @) — 7iz|p- B ) —7isilp, B) + ilp, @),

[x2>r. = —[| (Jsp: + 3P2) B +7Azlpo) — 7i=ilpy @) — Hilp, B)],

[xadr. = |(=7sP:+1ps) @) +722(p. B) + 7i3ilp, B) + dilp, @),

Ixadn = —[1(—sp, +3p.) BY —7Az|p, @) + 7izilp, ) — 3ilp, B)),
where p, = po, én'd'p, and p, are spatial orbitals related to the py, appeariﬂg in (3.9) through
Ps1 = F F2(p, +ip,). If we define the purely spatial integrals

(A 5.12)

Sy = (pzlsl>a Sz = <Pz|51>, (A 5.13)
which are both positive, the relations (A 5.12) show that F is given by
F = 75(S2+82+4/35,5,)%. (A 5.14)

If we assume that the equilibrium bond lengths considered as a function of bond angle are
insensitive to small displacements of this angle about its equilibrium value, the overlaps S,
and S, are simply proportional to sin & and cos a respectively (figure 1). For these values of
the overlaps, F is predicted to be maximized at & = 45° so that the H,-E-H; bond angle is
predicted to be 90°. If we neglect the contributions of the small components to the overlaps
entering the equation (A 5.11) determining ¢; and ¢, this can be written in terms of the overlaps
S, and S, by invoking the large components (A 5.12). The result is

[( —V%Sz + %Sz)a + TIESE:]% [6'1( - V%Sz) + 02( '—713-Sz - %Sz)]
= [(Js8,+ 352 + 5 SHH [—ea(712S,) +o(F5S. — 35.)]. (A 5.15)

Solution of this equation, subject to (4.13), at the predicted equilibrium bond angle of 90°
for which S, = S,, yields ¢, = % and ¢, = } and hence through (A 5.6) ¢; = ¢, = 75. The
alternative solution of (A 5.15) and (A5.6) namely ¢, = —}, ¢, =2, ¢3 =—¢c, = F5 yields
the identical wavefunction in (4.12).

It has therefore been shown that the Kappa-valence method predlcts the H-p-H system
to be bent with a bond angle of 90° and that the bonding can be described by the four hybrid
orbitals (4.18) of the divalent heavy element.
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APPENDIX 6. EXAMINATION OF THE QUANTITIES R—R; ENTERING
THE KAPPA VALENCE DESCRIPTION OF HALIDES

(a) Calculation of R, and R,
The quantities R, and R, defined by (6.21), which enter the expression (6.29) for the inter-

action energy predicted by the wavefunction (6.7), become after substitution of the large
components (3.9) and neglect of the small components

R, = —3(1-a) {ps,ulPa> (<px|px,H><Apx,H|G%e1|px,H>A— <px|G'R1Ipx,H>),} (A 6.1)
R, = —31a{po, u|Po) ({Po|Po, 1) {Po, | G, | Po, 1) — {Po| G, | Po, 1))
with 93?1 = 2pr,11 +Jp, H“?’Jpo,ﬁ—pr,H_Kpo,H’l (A 6.2)

, A A A
GRz = 4JD1,H - 2pr,H - 4JD0,H’

where p, , and p, , are purely spatial orbitals for atom p having p, or p, symmetry. By intro-
ducing the standard relation

{PePa, 1|75 P o 1 Py 1) = PPy, |72 |Pe, n Py, ) + 2{PuPy, ul 2! [Py, B P m)> (A 6.3)
the results (A 6.1) simplify to

A A A A
R, = }(1-a) <p1:,H|p.7c><pz|3JDx,H—3Jpz,H+KDz,H_Kpo,H|pz,H>> }

A R, (A 6.4)
Ry = a{po, 1|Po) (2{Po|Po, ) <Po, HIKDI,HIPO, 1) — ${Po| G&,|Po, 1))

In the discussion of the magnitude of R, and R, it is useful to introduce a complete set of halogen
orbitals of which p, g, P, x and p,, i are members and to invoke (A 6.3) to express (A 6.4) as

Ry = }(1-a){pe,ulpPe) = <Px|aH><aH|3Jpz,H"‘?’Jp;,ﬂ""Kpl-,"HKpo,Hlpz,H>s
ag

(A 6.5)
R, = “24<P0,H|P0> 2
ap+ p

o (Polan) <3H|pr,H|P0,H>-

0,

It can be argued first that R, is small because it consists, (A 6.4), the factor (1 —a) {p,, u|Ps)
which is itself not large being disregarded, of a difference between pairs of integrals such as
(PP, 11l&|Pay 1Pz, 1> and <PoPy, 1lélPo, Par ) (¢ = riat) which can be expected to be similar.
Secondly it can be argued from (A 6.5) that R, is small because the result (A 6.3) shows that
all the terms for which |ay) is a p orbital vanish so that the leading contributions come from
terms for which this is a f or an h orbital. For diffuse f and h orbitals the two coulomb integrals
will tend to equality, and the exchange integrals will be small, while the overlap {p,|ag) will
not be large for the less diffuse functions. It can be similarly argued that R, is small either
because it consists, (A 6.4), of a difference between two terms of similar magnitude or because
it consists, (A 6.5), of the products of two overlap integrals multiplied by an exchange integral.
These arguments are corroborated by the values R; = —0.09 ¢V and R, = —0.077 eV com-
puted by using the Alchemey integrals programme, with the p orbitals on both centres taken
to be 2p Slater functions with exponent 2.0, and the internuclear separation to be 1.7328 a.u.
This system can be expected to provide a good estimate of R, and R, because a 2p Slater function
of exponent 2.0 will approximate a fluorine 2p orbital, 1.7328 being the equilibrium inter-
nuclear distance in this molecule. Hence terms R, and R, do not affect the qualitative features
of the bonding.
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(6) Calculation of R,

The quantity R,, (6.40), enters the interaction energy (6.39) predicted by the wavefunction
(6.35) which describes the interaction between the j—j coupled ground state of a heavy element
and a halogen adopting its optimal valence state. This quantity consists of a difference between
two matrix elements of the potential G4 %V"” Since the operator 7, (s. 2), is invariant
under a unitary transformation of the halogen orbitals it can be expressed as

A A A A
'Véo) = G’4 + GbE }’ bH* + GbE-—%, bH"%' (A 6.6)
It is useful to define the ket |R) by

IRY = (€0~ 478) [bad> = G~ 4Coniond) (~tlmudd +lzad)),  (A67)
where |bg ) has been expressed as (6.32). By expressing'é4 in terms of the spatial halogen
orbitals p, g, P, g 2nd p_,, g, the large components of |R) are found to be

IRYs = L0+ 8T+ (148 = 48) oo+ (22— 428 S5, ] (—tol Py, m B + (P w 0)
+is tn(Jpl i qu,n) (te|Py, m B>+ talPo, H “)) (tmIpl,Hpo,Hlpl,H o)
tUJD—pHPx,HIp—l aB)) - [(5tcter_1 HDo, H tc(tz 4t2)JDo,Hm,H) |Po,H B>
+ (to(tr—413) .I Py, EpoE — Do tﬂJPo,HPl g [P—m )]} (A 6.8)

A
where the quantities J,, 5y, g are coulomb operators built from the one-component functions
Pm, u 2nd p,y, g so that the matrix elements between the spinless one-component functions |d)
and |e) are

A .
4| J o, m 0w, €D = {dpp, ulé|ePu, u)- (A 6.9)

The overlap between |R);, and the ket
|LYy = ¢s|Po,u®) +cx|Ps,uB) (A 6.10)

is found from (A 6.8), since 242 = 1, to be

(LIR)1y = Heato[ (5% —3) ({P1.uP1, ml&|P1, & P1, B — {P1,uPo, B|Z|P1, HP0, B))
+{P1,uP-1, m|8|P-1, B P, B) + (105 —9) {Py,uPo, &|£|Po, 5 P1, 1))
+ 6o te[ (525 —4) (Po,uPo, m|€|Po, £ Po, ) — {Po,uP1, || Po, B P1, &)
—(2—1023) {Po,uP1, &|8|P1,  Po, 2)1}- ’ (A 6.11)

When p is the halogen, this result can be simplified to
(LIR)ru = ¥py, uPo, ul|Po,u Py, m) [6xt(T — 2087) + 2, (12 - 30£7)] (A 6.12)

by invoking the relations

(Po,upo,ulﬂpo.upo.u) = <P1,uP1,u|g|P1.uP1,u>+<P1.iap—1,u|§|P-1,uP1,u>,
(Pl,up—l,ul.élp-l,upo.ﬁ = 2{Py,uPo,ul&|Po,uP1,u)-

The results (A 6.11) and (A 6.12) are useful because they can be used to express the quantity

R, as v ,
! Ry = <bvaidn (KLIR)ps — <bg 3vE)n<LIR dp). (A 6.14)

It can be argued that R, is small because it involves a difference between two similar terms,
the first of which, (L|R)yg, (A 6.11), is also a difference of similar integrals while the second,

} (A 6.13)
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(A 6.12), is an exchange integral. This is corroborated for both p-~Hal and p~Hal bonds by
computations on the model systems used in the last section to examine R, and R,. It is found
for the p and p cases respectively, after 4, and ¢, have been calculated from (6.46), that R, is
indeed small having the values —0.059 eV and — 0.065 eV.

(¢) Calculation of R

The quantity Ry defined below by (A 6.15) enters the interaction energy (6.48) predicted
by the covalent wavefunction (6.47) describing the formation of a = bond between a halogen
and a heavy element having a single valence electron occupying a Dirac-Fock p orbital:

A A
R; = ¥pud|p2) (<p3IGr,lPud) — P2lPud) PuilGr,|Pu ), (A 6.15)
where n N N n n N
Gg, = Gu:,H%m;, g}t Gﬂ—l,H‘%yﬂ—-l,H~% +Gontent tGont,on-3 —4Gpg,p-4, (A 6.16)

The quantity R; becomes, when expressed in terms of solely the large components,
Rs = 3<pe, ulPe) (4 = {P2l|Ps, 1) B)s (A 6.17)
where
4 = 2¢p;Po, u|8|Pz, 1 Po, 1)~ 3Pz Pe, 1l €|z, 1 P, 1) — <P Py, u|8| Pz, 1 Py, 1)
— <Pz Po, 1ul&|Po, 11 Pz, 1) — PPy, ul&| Py, 1 Pe, w0
B = $({P., uPy. ul8|Pz, u Py, u> = {Pz, 1Pz ulél|Ps, 1 Pa 1))
~2{P, uPy, ul&|Py, 11 Pz, 1)-

(A 6.18)

Considerations similar to those used to discuss the magnitudes of R, and R, indicate that R;
will be small. This is corroborated by the value of 0.084 eV computed for the model problem
used to investigate R, and R,.

APPENDIX 7. EVALUATION OF A FOCK MATRIX ELEMENT ENTERING THE
RELATIVISTIC MOLECULAR ORBITAL DESCRIPTION OF MONOHALIDES

It was shown in §6(b) that the vanishing of the Fock matrix element (ZH%IfM|n1,II%)
was the key feature which ensured that one of the molecular orbitals having m; = % was non-
bonding, being located entirely on the halogen, and hence that the two remaining molecular
orbitals having m; = § were respectively bonding and anti-bonding. This observation is
merely a special case of the more general result that there will be one bonding, one anti-
bonding and one halogen non-bonding orbital of m; = § if the Fock matrix element
<X2%|ﬁ M|%s %) vanishes, where |y,) and |y;) are orthogonal halogen valence orbitals defined
through

2223 = di|zu + §) +dy|mey, m £ 3, } (A7.1)

X3+ 3) = —dolzg + §) +dy My w £ 5.

The results of the calculation presented in §6(5) predicted that the valence molecular orbitals

having m; = + } were
[013) = Si(ea|vEd +ealn23)),

(623> = [X3%>a
|61 — 3> = Sile|v —3) +eafx2 — 1)),
|¢2_%> = ‘XS_%>’

(A 7.2)
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with the coefficients &, and d, given by —cy; and ¢y, (6.63). Hence it is only necessary to show
that ¢ x2§|FM|x3§) vanishes to establish that the molecular orbitals (6.68) are indeed correct.

The Dirac—Fock equations satisfied by the halogen valence orbitals show that the matrix
element (x2§|FM|13§) (Fzs) reduces to (xz%|VNE +VDFE+Vm|13§) which can, excepting the
local part of the core potential VDFE, be calculated by retaining solely the large components.
If |¢) is a molecular orbital whose large components have the form

|61 = a1|Aa) +c,B), (A17.3)
the direct calculation using the large components (6.6) shows the matrix element {y, %If’MI Yzt
to be given by
(Xz%léw.wus%) = c1dydy(—{Po,nAl&|Po,nA) + (Pr,uA|Z|PL, A + (Po,HAlglAPo.H»
+¢3dy dy(— {Po, n B|2|Po, s B) + <Py, HB|£|P1 uB)—{py,uB|2|Bpy, &)
+6165(d3<Py, A|2|Bpo, 1) — 4Py, HB|§|Ap1 H))- (A 74)

The contribution, denoted F,y, to F,, arising solely from the valence molecular orbitals is the
sum of the six terms of the type (A 7.4):

6 A -6 .
Fyy = i§1 (Xz%'Gw,vJXs%) = i§1 Fov(dy). (A 7.5)
The six terms Fys,(¢;) are found by using (A 7.1)-(A 7.4) and (A 6.3) to be
Fyv(x33) = 0, : (A17.6a)
Fosv(xs —3) = [2d3d,—3dyd}—dydy(d}— d D1<po, 5Pz, ul&|P-, aPo, s _ (A 7.60)
Fys(p3) = 2d,d:{Po, uPe, n|2|Pz, 5 Po, 1> , (A 1.6¢)
Falp—1) = 0 (A 7.6d)

Fzsv(d’l%) = dydy[ — (Po, u(€2d1Po, 1 F /@ &1P0) |£|Po, n (€221 Po, & F V@ €1P0) )
+<P1,u(¢2¢1Po, 1t  4/a 1P0)|8|P1, (€241 Po,  F W@ &1P0))
+<Po, m(¢261Po, 1t /@ €1P0)|£| (6261 Po, 1 F /& €1 Po) Po, &)
—<Po,ul€2dePr, m+ 62 (1— a)lp,) |8|Po, r(¢2d2py, m +6:(1 —a)ip,))
+{py, uleadspy, m +e1(1—a)¥py) |2]py, u(e2daPr, m+ey(1 -a)tp))
— (Pr(esdaPr, 1 +2(1 = 0)py) 8] (e2doPr,m +er (1 - )i py) Py )]
+d3(ps, m(€21Po, 1 v/ Po) 8] (e2dyP1, 1 + &1 (1 — )i py) Po,u)
; —d3i{Po, n(¢2d2P1, m+61(1 = a)tp,) |21 (e241Po, 1t F 4/@ €1P0) P1' D> (A 7.6¢)
Fpo(; —3) = d1dy[ —<{po,a(—¢2d2P_1, 5 F &4(1 —a)tp,) |&|po, n(—€2deP_y, n Fer(1—a)ip_y))
| +{P1,u( —€2d2P_1,mn F&4(1 "ﬂ)*P—l) 8|1, 5( —€2deP_1, 5 F &4(1 —a)tp,))
+{Po,u(—€2d:P_1,mF&4(1 ;a)ip-—l) [8](—e2d2p_s, 5 F (1 -a)tp_)) Po,r?
—<Po, & — €241 Po, ir + €14/ Po) |€|Po, n( — €201 Po, & +€14/@ Po) )

+ <Py, 5( — €28, Po, 5 +14/a Po) |8|P1, 5( — €241 Po, & +€14/a Po) )
—{P1, 5(— €21 Po, 1 +€14/a Po) || (— €261 Po, 1 +€14/2 Po) P1, 1))

+d3{po, u( — €21 Po, m +€14/@ Po) |8 (— €242 Py, 5 F s (1 —a)ip-l) Pim)

—d3{py, a(—e2doPy, 5 Fea(1 - a)*P-—l) |§| ( —ezdzpo,n +¢14/a Po) Po,m)-
(AT7.6/)


http://rsta.royalsocietypublishing.org/

JA \
' B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

RELATIVISTIC THEORY OF CHEMICAL BONDING 639

The result (A 7.64) taken in conjunction with the expression (A 7.2) for |¢,3) shows that
(A 7.6¢) has no purely one-centre terms. The one-centre contributions, denoted Fygy,(¢; — 3)
of (A17.6f) are

Fogvic(dr — %) = dydy[3d1—4d3+€35(3d3 —4d7)] <P0,pr,H|§|Pm,HP0,H>~ (A17.7)

The matrix element Fy;, can be estimated by assuming both that halogen non-bonding
orbital is determined by (6.61) and that the magnitudes of the overlaps {(po|py,x) and
{p1|p1, 1) are equal. In this approximation d, = /5 and d, = /% if ilv) is a p orbital, while
d, = —%and d, = J5if |v) is a p orbital. If one sets ¢; = ¢, = 75, the one-centre contribu-
tion ( Fygye) 10 Fogy is found to be

Fogvre = %% <Po 1Pz 1l8|Pe, uPo ) = — 3£ FP, |v)=p, } (A 7.8)
Fygvie = =142 (Po, 11 Pe 11|&|Po, uPo,u) = —25¢ F@, |v) =p.
In the second step we have the relation
{Po, 1Pz, 18| Pr, u Po, ) = 25F?, (A17.9)

where F‘® is the non-relativistic Slater integral for the halogen valence orbitals. The quantities
(A 7.8) are found, by taking the value F, = 0.25 a.u. for chlorine (Pyper & Grant 1978), to
be 0.26€eV and 0.70€V in the P and p cases respectively. Only (A 7.6¢) and (A 7.6 f) contain
terms that are not purely one centre. These can be expected to be smaller than the former.
Considering terms involving only one orbital of the heavy element, the third and sixth lines
in square brackets in (A 7.6¢) contain <{p,, ;Py|8|Py. 1 Pe, uy> Which is the energy of interaction
of two overlap charges densities whose nodal planes are mutually perpendicular, and is thus
small. The remaining terms become, when expressed in terms of real orbitals,

2d, dye, ex{dan/3[ — {Po, 1 Pul&| Po, 11 Pu, 1)
+3({Ps, 0 P2l&|Pe, 1 P, 1) + {Pu, u Pyl &| P, Py, 1))
—dy 75 (—<{Po, 1 Pol&|Po, 11 Po, 117 + {Pa, 1 Pol P, HPo,n))}- (A 7.10)

The term in (A 7.10) involving d, is the difference between the interaction of a n overlap
charge density with one constructed from the halogen p, orbital and one constructed from a
p—y,u orbital. Both this term and that involving 4, can therefore be expected to be small.
Test calculations for the model system used in Appendix 6 predict the d,-term to be 0.07 eV
and the d;-term to be 0.13 V. There are no terms in (A 7.6 f) that involve just one orbital
of the heavy element because such contributions in the pairs of lines (1+3), (5+6), (2+8)
and (4+7) sum to zero. The terms in (A 7.6¢) and (A 7.6 f) containing an orbital of the heavy
element twice sum to differences in two-centre coulomb integrals. Such dlfferences will not
be large and moreover are neglected when the diagonal Fock elements {zy 2|F M|Zgd) and
Amy, H2|FM|1t1 3 are taken to be equal (§6(b)).

The only contribution to Fy, not so far considered is that arising from the nucleus plus the
core of the heavy element. The contribution of the local core potentlal becomes, with only
the large components of the valence orbital retained, d; d,({p;, Hll{\m + Zc.]clp1 Y — ~<Po, HIVNE +

chlPo uy) which was neglected as small when the diagonal elements (szlFMleE) and
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A .
{my, 11 4| Fun|my, 1 3) were taken to be equal. The contribution of the core exchange potentia.
can be written

—<X22|E Kchs = Z ¢1cC2e(d3{P1, m e lgchPo,rO d3<po, u B |§|Acpl m), (AT.11)

where ¢;, and ¢, are the coefficients (A 7.3) of the purely spatial functions 4, and B, asso-
ciated with o and B spin respectively in the large components of core orbital |c). The contri-
butions in (A 7.11) arising both from core s orbitals and from core orbitals having m; = |
vanish because either ¢, or ¢y, is zero. For the remaining core orbitals the contributions from
the core I and 1 orbitals have opposite signs and cancel exactly in the limit that the radial
functions associated with the large components of such pairs of core orbitals are the same.
Although these radial functions will not be identical for a heavy atom the individual exchange
integrals are small andAhence (A 7.11) can be neglected. It has therefore been shown that the
matrix eclement {y,%|Fy|xs3) is sufficiently small that its neglect does not invalidate the
qualitative features of the bonding deduced in §6 (5).

APPENDIX 8. MORE GENERAL CALCULATION OF MOLECULAR ORBITALS
IN p? DIHALIDES

In this Appendix it is shown that for every bond angle there are still four non-bonding orbi-
tals of ﬁz t-eigenvalue ¢ located entirely on the halogens even if the resonance integrals (7.12)
for pairs of orbitals aligned parallel and perpendicular to an E—Hal bond are not identical.
It is further shown that the energies of the two bonding orbitals of Hz -eigenvalue ¢ are inde-
pendent of the interbond angle if the two quantities (7.12) are equal.

After expressing the large components of both the orbitals |p$) and |p —}) and of the six
functions (7.2) in terms of the functions p, , and p, ,, the methods used to calculate the Fock
matrix elements (7.6) show that the twelve matrix elements (yy, 1|FM|pm) (t=1,2,..,6)
are given by

Ol Fulpd) = — (cos? aF, —sin® aFy), (o Faulp — 3D = Js(cos? aF, —sin? o F),

Ot sl Fulpd) = 0, Ctan, ol Filp =3 = B(sin® a F, —cos? o F),

Ot | Fulp3) = 0, Ol Fulp =3 = 0,

ol Flp2) = 0, Gt o Fulp =) = —Zcos asin a( F, + F),
<XH,5|ﬁLI|pg> = —cos asin a(F, + F), <XH,5|ﬁM|p —3) = I/%COS asin a(F, + I),

<XH 6|FM|p2> =1k, <XH,6lﬁMlp -3 = _2/1—3’.Fr

(A 8.1)

All the remaining off-diagonal Fock matrix elements involving the eight having ﬁz -eigen-
value i are zero. The results (A 8.1) show immediately that |y, ;) is a2 non-bonding orbital
located entirely on the halogens. The vanishing of both the matrix elements (yy, 2|FM|p2
and {xg, 4|F m|P3) shows that there is a linear combination of |y, ,) and | X, 4 which is a
halogen non- bondmg orbital. Furthermore the equality of the ratios {yy, 5|FM] P3>/{Am,s IFM
—3> and <XH,1IFM|P2>/ {Xm, 1|FM|I) 3> shows that a further non-bonding orbital can be
constructed by taking linear combinations of |y ;) and |xy, ;). After defining the positive

quantity
r=F/F, (A 8.2)
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the orbitals |xg,1), |Xm, 2> |%m, 4 and |xy,s) are therefore replaced by the four orthogonal
linear combinations

INBO,;) = N[(sin? & —7 cos? &) | %y, 4 +5in @ cos a(1l+7) | %y, 2]
INBO,) = N,[(cos? o —rsin? ) |xy, 5> —sin @ cos a(1+7) |, 10],

[%1) = MNy[sin & cos (1 +7) | %, 4) — (sin? & —7 cos? @) | %y, 2]
[xs) = Np[sin o cos a(1+7) |xg,5p + (cos® a—rsin? &) |xg. 1],

(A 8.3)

where N, and N, are normalization constants. Both the orbitals [NBO;) and |[NBO,) have
vanishing Fock matrix elements with both |p$) and |p —%) and are therefore non- bondmg
orbitalslocated entirely on the halogens. The four off-diagonal Fock matrix elements ¢ x1|FM|p, my
(z = 1, 2) are found from (A 8.3) and (A 8.2) to be

<7§\1‘f‘M|P%> =0,
(x1|FMLp —1> = N, 5 F [ —sin? a cos? a(1+7)% — (sin® a —r cos? a)?], (A 8.4)
(el Fyr|p3) = — N, F [sin? o0 cos? a(1+7)2 + (cos® a —r sin? a)?], )
(lef‘Mlp —1) = N, 75 F\[sin? o cos? a(1+7)2+ (cos? a—r sin a)?].

The two functions |y,) and |yy,¢) are now replaced by two orthogonal linear combinations
chosen such that one member |y3) does not interact with |p$). This procedure is useful because
it generates two functions |y;) and |ys) which do not interact with |p$) thereby enabling a
non-bonding orbital interacting with neither |p3) nor |p —3) to be constructed as a linear
combination of |y,) and |x3). The two functions |y3) and |xs) defined by

[%5) = N3l[Fs|xep + 1N, Je[sin? & cos? a(147)2+ (cos? & —7 sin? a)?] IXH,6>>} (A 8.5)
|%3) = N[N, 75[sin? & cos? a(1+47)%+ (cos? a —7 sin? &)2] | %) — 75| X, 6 '
have Fock matrix elements that are calculated from (A 8.1) and (A 8.4) to be
clfulpty = o
el Fulp —3) = Ny N; 3 F [sin? « cos? a(1+7)2+ (cos? a—r sin® )], (A 8.6)

<x§lﬁM|p%) = — N, N, 75 F {[sin? & cos® a(1 +7)%+ (cos? oo — 7 sin% a)2]2 + 1},
(xglﬁMlp —3) = NyN, s F {[sin® « cos? o(1+7)2+ (cos® a —r sin? a)?]2— 1}.

The two functions |y,) and |ys) are now replaced by the orthogonal linear combinations
INBO;) and |ys) defined as

INBO;) = NN, N, /5[sin® « cos? ot(1 +7)2+ (cos® a —r sin? )] |
+ N 4/3[sin? & cos? a(1 +7)2+ (sin? . — 7 cos® a)?] | x5)},
|x5y = NN, /3[sin? & cos? a(1 +7)2+ (sin? & —r cos® a)?] | ¥y

— N, N, 75[sin?  cos? ot (1 +7)2+ (cos® o — 7 sin a)?] | xs) }.

(A 8.7)

In the steps (A 8.2)—-(A 8.7) the six functions |y ;) to |xy,6) (7.2) have been replaced by the
functions |y, 5, [NBO,), INBO,), INBO,), |xs) and |x3). The first four of these six functions
have vanishing Fock matrix elements with both |p$) and |p —) thus showing them to be
non-bonding orbitals located entirely on the halogens. The four remaining molecular orbitals
are obtained by diagonalizing the 4 x 4 matrix arising from the functions |p$), |p — ), |x2>
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and |y3). The only two off-diagonal Fock matrix elements not so far calculated are found from
(A 8.7) and (A 8.6) to be

(ol Fulpd) = 0
(x§|f*‘M|p —1Y = —N,;4/2 F {N}%[sin® & cos? (1 +7)2+ (sin® &« —7r cos® a)?]2; (A 8.8)
+ N3 N3 §[sin? o cos® oe(1 +7)2+ (cos? o — 7 sin? a)?]?}.
Solution of the 4 x 4 secular problem will yield two bonding and two anti-bonding orbitals.
The expressions for the molecular orbitals derived in the last paragraph greatly simplify if
the resonance integrals F, and F| (7.12) are equal. For this case the ratio » and hence all four

normalization constants become unity. The four orbitals |y 5), |NBO,), INBO,) and |[NBO,)
are still halogen non-bonding orbitals while |x3) and |y3) simplify to

” — 1 2 - ’ ,
‘X?> ﬂs(\/ "X1> |X2>) } (A 8.9)
l23> = Fe(|%2> + 2%, 60)>
with off-diagonal Fock matrix elements
I Fylpd) = o, NFylp —1) = — 2 F,
(X?| AM|P§> <'X,2’! AM|P 3> N _L} (A 8.10)
<X31FM|P§> = —«/2 Fy, <X3|FM|P -3)=0.

These matrix elements immediately show that for all Hal-E-Hal bond angles there are two
bonding molecular orbitals of energy d+ /2 F,. This energy is identical to the energy of both
the non-relativistic ¢ and = three-centre bonding orbitals. '
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